Skip to main content

Non-volatile Memory of New Generation and Ultrafast IR Modulators Based on Graphene on Ferroelectric Substrate

  • Chapter
  • First Online:
Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

A review of recent achievements in graphene-on-ferroelectric systems is presented. These systems have several unique features. Among them are: the possibility to obtain the high carrier concentration (~1012 cm−2) for the moderate gate voltages (of ~1 V) and the existence of hysteresis (or anti-hysteresis) in the dependence of the graphene channel resistance on the gate voltage. The use of ferroelectric substrates for graphene had enabled the construction of the robust elements of non-volatile memory of new generation. These elements operate for more than 105 switches and preserve information for more than 1000 s. Graphene-on-ferroelectric systems can be characterized theoretically by the ultrafast rate of switching (~10–100 fs). It was also demonstrated theoretically, that the effective, fast and small modulators of the middle- and near-IR radiation for different optoelectronic applications can be constructed on the base of graphene on the Pb(ZrxTi1−x)O3 ferroelectric substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.: Graphene: status and prospects. Science 324, 1530–1934 (2009)

    Article  Google Scholar 

  2. Novoselov, K.: Graphene: materials of the Flatlands. Uspekhi Fizicheskih Nauk. 181, 1298–1311 (2011). (In Russian)

    Article  Google Scholar 

  3. Das Sarma, S., Adam, Shaffique, Hwang, E.H., Rossi, E.: Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    Article  Google Scholar 

  4. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  5. Peres, N.M.R.: Colloquium: the transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673–2700 (2010)

    Article  Google Scholar 

  6. Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.: Realization of a high mobility dual-gated graphene field effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94, 062107 (2009)

    Article  Google Scholar 

  7. Konar, A., Fang, T.: Depdeep Jena. Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B. 82, 115452 (2010)

    Article  Google Scholar 

  8. Strikha, M.: Modulation of a mid-IR radiation by a gated graphene on ferroelectric substrate. Ukr. J. Phys. Optics. 12, 162–165 (2011)

    Article  Google Scholar 

  9. Zheng, Y., Ni, G.-X., Toh, C.-T., Zeng, M., Chen, S., Yao, K., Özyilmaz, B.: Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009)

    Article  Google Scholar 

  10. Strikha, M.: Non-volatile memory and IR radiation modulators based upon graphene-on-ferroelectric substrate. A. Rev. Ukr. J. Phys. Opt. 13, S5–S27 (2012)

    Article  Google Scholar 

  11. Hong, X., Zou, K., DaSilva, A., Ahn, C., Zhu, J.: Integrating functional oxides with graphene. Solid State Commun. 152, 1365–1374 (2012)

    Article  Google Scholar 

  12. Zheng, Y., Ni, G.-X., Toh, C.-T., Tan, C.-Y., Yao, K., Özyilmaz, B.: Graphene field effect transistors with ferroelectric gating. Phys. Rev. Lett. 105, 166602 (2010)

    Article  Google Scholar 

  13. Raghavan, S., Stolichnov, I., Setter, N., Heron, J.-S., Tosun, M., Kis, A.: Long-term retention in organic ferroelectric-graphene memories. Appl. Phys. Lett. 100, 023507 (2012)

    Article  Google Scholar 

  14. Hong, X., Hoffman, J., Posadas, A., Zou, K., Ahn, C., Zhu, J.: Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3. Appl. Phys. Lett. 97, 033114 (2010)

    Article  Google Scholar 

  15. Zheng, Y., Ni, G.-X., Bae, S., Cong, C.-X., Kahya, O., Toh, C.-T., Kim, H., Im, D., Yu, T., Ahn, J.H., Hong, B.H., Ozyilmaz, B.: Wafer-scale graphene/ferroelectric hybrid devices for low voltage electronics. Europ. Phys. Lett. 93, 17002 (2011)

    Article  Google Scholar 

  16. Song, E.B., Lian, B., Kim, S.M., Lee, S., Chung, T.-K., Wang, M., Zeng, C., Xu, G., Wong, K., Zhou, Y., Rasool, H., Seo, D., Chung, H.-J., Heo, J., Seo, S., Wang, K.: Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99, 042109 (2011)

    Article  Google Scholar 

  17. Wang, H., Wu, Y., Cong, C., Shang, J., Yu, T.: Hysteresis of electronic transport in graphene transistors. ACS Nano 4, 7221–7228 (2010)

    Article  Google Scholar 

  18. Kurchak, A., Morozovska, A., Strikha, M.: Rival mechanisms of hysteresis in the resistivity of graphene channel. Ukr. J. Phys. 58, 473–479 (2013)

    Google Scholar 

  19. Strikha, M.: Mechanism of anti-hysteresis behavior in graphene-on- Pb(ZrxTi1-x)O3 substrate resistance. JETP Lett. 95, 198–200 (2012)

    Article  Google Scholar 

  20. Kurchak, A., Strikha, M.: Antihysteresis of the electrical resistivity of graphene on a ferroelectric Pb(Zr x Ti1– x )O3 substrate. JETP 116, 112–117 (2013)

    Article  Google Scholar 

  21. Ohtomo, A., Muller, D.A., Grazul, J.L., Hwang, H.Y.: Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)

    Article  Google Scholar 

  22. Fong, D.D., Kolpak, A.M., Eastman, J.A.: Stabilization of monodomain polarization in ultrathin PbTiO3 Films. Phys. Rev. Lett. 96, 127601 (2006)

    Article  Google Scholar 

  23. Nair, R.R., Blake, P., Grigorenko, A., Novoselov, K., Brooth, T.J., Stauber, T., Peres, N.M.R., Geim, A.: Fine structure constant defines visual transparency of graphene. Science 320, 5881 (2008)

    Article  Google Scholar 

  24. Strikha, M.V., Vasko, F.T.: Electro-optics of graphene: field-modulated reflection and birefringence. Phys. Rev. B. 81, 115413 (2010)

    Article  Google Scholar 

  25. Orlita, M., Potemski, M.: Dirac electronic states in graphene systems: optical spectroscopy studies. Top. Rev. Semicond. Sci. Technol. 25, 063001 (2010)

    Article  Google Scholar 

  26. Vasko, F.T.: Saturation of interband absorption in graphene. Phys. Rev. B. 82, 245422 (2010)

    Article  Google Scholar 

  27. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  Google Scholar 

  28. Bao, Q., Zhang, H., Wang, B., Ni, Z., Haley, C., Lim, X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5, 411–415 (2011)

    Article  Google Scholar 

  29. Strikha, M.V., Vasko, F.T.: Carrier-induced modulation of light by a gated graphene. J. Appl. Phys. 110, 083106 (2011)

    Article  Google Scholar 

  30. Strikha, M.V.: Bi-stable optical system, based on hysteresis in graphene-on-Pb(ZrxTi1-x)O3 reflectivity. Ukr. J. Phys. Optics. 13, 45–50 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by State Fundamental Research Fund of Ukraine (Grant 53.2/006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym V. Strikha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strikha, M.V. (2014). Non-volatile Memory of New Generation and Ultrafast IR Modulators Based on Graphene on Ferroelectric Substrate. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_9

Download citation

Publish with us

Policies and ethics