Skip to main content

Chronostasis: The Timing of Physiological Systems

  • Chapter
  • First Online:
Mechanisms of Circadian Systems in Animals and Their Clinical Relevance

Abstract

Even though the biological relevance of circadian rhythmicity has been recognized since the middle of the past century, the majority of the medical community has remained unaware of the circadian rhythms or their relevance during most of this time, perhaps because of their apparent opposition to homeostasis. It was not until the 1980s that circadian rhythms begun to be noticed among the physicians, but even now, 30 years later, circadian rhythms are still not an integral part of medical physiology. The cause of the neglect and even rejection of the relevance of circadian biology to human health, from most medical practitioners until the last quarter of the twentieth century, may have involved among other factors: (1) the heuristic power of homeostasis as a general physiological process to understand health, and its unbalance as a major cause of disease; (2) the fact that disruption of circadian rhythmicity was not ostensibly associated at the time with any pathological entity; and, last but not least, (3) the technical problems associated with collecting relevant physiological data for a long time period before the age of electronic devices and massive digital information processing.

This chapter presents a perspective for integrating circadian rhythmicity and its mechanisms with medical physiology. We start by a brief review of the concepts of homeostasis and rheostasis in physiology, then introduce the concept of chronostasis as the mechanism to timing physiological processes. Finally, we provide the main implications of the concept of chronostasis in human health and disease, in light of the recent advances in molecular genetics related to the so-called clock genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Herzog E, Yamazaki T et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356

    PubMed  CAS  Google Scholar 

  • Aguilar-Roblero R, Díaz-Muñoz M (2010) Chronostatic adaptations in the liver to restricted feeding: the FEO as an emergent oscillator. Sleep Biol Rhythms 8:9–17

    Article  Google Scholar 

  • Aschoff J (1955) Der Tagesgang der Korpertemperatur beim Menschen. KIin Wochenschr 33:545–551

    Article  CAS  Google Scholar 

  • Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Baeza-Raja B, Eckel-Mahan K, Zhang L et al (2013) p75 Neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks. J Neurosci 33:10221–10234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bernard C (1865) Introduction â l’etude de la Médicine Experimentale. J. B. Baillièère et Fils, Paris

    Google Scholar 

  • Bi S, Kim J, Zheng F (2012) Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 46:309–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Borbély A (1982) A two-process model of sleep regulation. I. Physiological basis and outline. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  • Borgs L, Beukelaers P, Vandenbosch R et al (2009) Cell “circadian” cycle. New role for mammalian core clock genes. Cell Cycle 8(6):832–837

    Article  PubMed  CAS  Google Scholar 

  • Boulant JA (2006) Neuronal basis of Hammel’s model for set-point thermoregulation. J Appl Physiol 100:1347–1354

    Article  PubMed  Google Scholar 

  • Boulos Z, Rosenwasser AM (2005) A chronobiological perspective on allostasis and its application to shift work. In: Shulkin J (ed) Allostasis, homeostasis and the costs of physiological adaptation. Cambridge University Press, Cambridge, UK, pp 228–301

    Google Scholar 

  • Cabanac M (2006) Adjustable set point: to honor Harold T. Hammel. J Appl Physiol 100:1338–1346

    Article  PubMed  Google Scholar 

  • Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431

    Google Scholar 

  • Cannon WB (1936) The wisdom of the body. W.W. Norton, New York

    Google Scholar 

  • Chen HF, Huang CQ, You C et al (2013) Polymorphism of CLOCK gene rs 4580704 COG is associated with susceptibility of Alzheimer’s disease in a Chinese population. Arch Med Res 44:203–207

    Article  PubMed  CAS  Google Scholar 

  • Daan S, Beersma DM, Borbély AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246(2 Pt 2):R161–R178

    PubMed  CAS  Google Scholar 

  • Delgadillo JA, Canedo GA, Chemineau P et al (1999) Evidence for an annual reproductive rhythm independent of food availability in male Creole goats in subtropical northern Mexico. Theriogenology 52:727–737

    Article  PubMed  CAS  Google Scholar 

  • Firsov D, Tokonami N, Bonny O (2011) Role of the renal circadian timing system in maintaining water and electrolytes homeostasis. Mol Cell Endocrinol 349:51–55

    Article  PubMed  Google Scholar 

  • Fredholm B, Johansson S, Wang Y-Q (2011) Adenosine and the regulation of metabolism and body temperature. Adv Pharmacol 61:77–94

    Article  PubMed  CAS  Google Scholar 

  • Goel N, Banks S, Mignot E, Dinges DF (2009) PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS One 4:e5874

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammel HT (1968) Regulation of internal body temperature. Annu Rev Physiol 30:641–710

    Article  PubMed  CAS  Google Scholar 

  • Harris RBS (1990) Role of set-point theory in regulation of body weight. FASEB J 4:3310–3318

    PubMed  CAS  Google Scholar 

  • Jéquier E, Tappy L (1999) Regulation of body weight in humans. Physiol Rev 79:451–480

    PubMed  Google Scholar 

  • Jéquiere E (2002) Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci 967:379–388

    Article  Google Scholar 

  • Kalsbeek A, Ruiter M, La Fleur SE et al (2006) The hypothalamic clock and its control of glucose homeostasis. Prog Brain Res 153:283–307

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A, Yi C-X, La Fleur SE, Fliers E (2010) The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol Metab 21:402–410

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 467–472

    Google Scholar 

  • Kotz C, Nixon J, Butterick T et al (2012) Brain orexin promotes obesity resistance. Ann N Y Acad Sci 1264:72–86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewy AJ, Emens JS, Songer JB, Sims N, Laurie AL, Fiala SC, Buti AL (2009) Winter depression: integrating mood, circadian rhythms, and the sleep/wake and light/dark cycles into a bio-psycho-social-environmental model. Sleep Med Clin 4:285–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5:150–157

    Article  PubMed  CAS  Google Scholar 

  • Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, Belsham DD, Backx PH, Ralph MR, Sole MJ (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol 294:R1675–R1683

    CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA (1982) The clocks that time us: physiology of the circadian timing system. Harvard University Press, Cambridge, MA, pp 448

    Google Scholar 

  • Morris CJ, Yang JN, Scheer FA (2012) The impact of the circadian timing system on cardiovascular and metabolic function. Prog Brain Res 199:337–358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mrosovsky N (1990) Rheostasis: the physiology of change. Oxford University Press, New York

    Google Scholar 

  • Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207–R1228

    Article  PubMed  CAS  Google Scholar 

  • Nicolaïdis S (1977) Physiologie du comportement alimentaire. In: Meyer P (ed) Physiologie humaine. Flammarion, Paris, pp 908–922

    Google Scholar 

  • Perreau-Lenz S, Pevet P, Buijs RM, Kalsbeek A (2004) The biological clock: the bodyguard of temporal homeostasis. Chronobiol Int 21:1–25

    Article  PubMed  Google Scholar 

  • Romanovsky A (2004) Do fever and anapyrexia exist? Analysis of set point-based definitions. Am J Physiol Regul Integr Comp Physiol 287:R992–R995

    Article  PubMed  CAS  Google Scholar 

  • Romanovsky A (2006) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292:R37–R46

    Article  PubMed  Google Scholar 

  • Rosenblueth A, Wiener N, Bigelow J (1943) Behavior, purpose and teleology. Philos Sci 10:18–24

    Article  Google Scholar 

  • Roth J, Rummel C, Barth S, Gerstberger R, Hübschle T (2006) Molecular aspects of fever and hyperthermia. Neurol Clin 24:421–439

    Article  PubMed  Google Scholar 

  • Russek M, Cabanac M (1983) Regulacion y Control en Biología. Instituto Politécnico Nacional, México, 148

    Google Scholar 

  • Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 23:1–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Speakman J, Levitsky D, Allison D (2011) Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech 4:733–745

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress cognition and health. Wiley, New York, pp 629–650

    Google Scholar 

  • Stevens RG, Hansen J, Costa G et al (2011) Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report. Occup Environ Med 68:154–162

    Article  PubMed  Google Scholar 

  • Tenkanen L, Sjoblom T, Kalimo R, Alikoski T, Harma M (1997) Shift work, occupation and coronary heart disease over 6 years of follow-up in the Helsinki Heart Study. Scand J Work Environ Health 23:257–265

    Article  PubMed  CAS  Google Scholar 

  • Tonsfeldt K, Chappell P (2011) Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 349:3–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Viola A, Archer S, James L (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    Article  PubMed  CAS  Google Scholar 

  • Watts AG (1991) The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 77–106

    Google Scholar 

  • Werner J (2010) System properties, feedback control and effector coordination of human temperature regulation. Eur J Appl Physiol 109:13–25

    Article  PubMed  Google Scholar 

  • Wiener N (1948) Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge, MA, p 212

    Google Scholar 

  • Woods SC, Ramsay DS (2007) Homeostasis: beyond Curt Richter. Appetite 49:388–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright CL, Burgoon P, Bishop P, Boulant JA (2008) Cyclic GMP alters the firing rate and thermosensitivity of hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 294:R1704–R1715

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci U S A 99:10801–10806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yasenkov R, Deboer T (2012) Circadian modulation of sleep in rodents. Prog Brain Res 199:203–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks José Luis Chavez-Juarez and Ana Maria Escalante for critical reading of the manuscript and assistance obtaining bibliographic material. Supported by Grants IN-204811 from PAPIIT/DGAPA/UNAM and CB-2009-01-128528 from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Aguilar-Roblero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aguilar-Roblero, R. (2015). Chronostasis: The Timing of Physiological Systems. In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_12

Download citation

Publish with us

Policies and ethics