Skip to main content

Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints

  • Conference paper
  • First Online:
Solving Computationally Expensive Engineering Problems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 97))

Abstract

A robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port unconventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically demanding microwave circuits with highly miniaturized and complex topologies. The key idea of the approach proposed here lies in an iterative redesign of a conventional circuit by a sequential modification and optimization of its atomic building blocks. The speed and accuracy of the presented method has been acquired by solving a number of simple optimization problems through surrogate-based optimization (SBO) techniques. Two exemplary designs have been supplied to verify the proposed method. An abbreviated wideband quarter-wave impedance matching transformer (MT) and a miniaturized hybrid branch-line coupler (BLC) have been developed. Diminished dimensions of the constructed circuits have been achieved by means of compact microstrip resonant cells (CMRCs). In the given examples, an implicit space mapping (ISM) technique has been utilized as a SBO engine. In general, the proposed method is compatible with other SBO routines as well. The final results have been acquired in only a fraction of time that is necessary for a direct EM optimization to generate competitive results. Numerical results have been validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmore, R., Besser, L.: Practical RF Circuit Design for Modern Wireless Systems. Artech House, Norwood (2003)

    Google Scholar 

  2. Ahn, H.-R.: In: Chang, K. (ed.) Asymmetric Passive Components in Microwave Integrated Circuits. Series: Wiley Series in Microwave and Optical Engineering, pp. 56–151. Wiley, New Jersey (2006)

    Chapter  Google Scholar 

  3. Xu, H.-X., Wang, G.-M., Lu, K.: Microstrip rat-race couplers. IEEE Microw. Magazine 12, 117–129 (2011)

    Article  Google Scholar 

  4. Ahn, H.-R., Bumman, K.: Toward integrated circuit size reduction. IEEE Microw. Magazine 9, 65–75 (2008)

    Google Scholar 

  5. Zatloukal, P., Heddle, R.M., Dabrowski, C.J.: Wireless mobile phone including a headset. US Patent no. 7373182 (2008)

    Google Scholar 

  6. Morimoto, H.: Personal digital assistant, wireless communication system and method of link establishment. US Patent no. 2004/0203372 (2004)

    Google Scholar 

  7. Ahn, S.-H.: Electronic smart meter enabling demand response and method for demand response. US Patent no. 8234017 (2012)

    Google Scholar 

  8. Harris, L.C., Smith, R.L.: Interferometric switched beam radar apparatus and method. US Patent no. 7755533 (2010)

    Google Scholar 

  9. Lewis, A.D., Mousseau, G.P., Gilhuly, B.J., Patterson, I.M., Banh, V.T., Rogobete, A., Burns, A.G., Lazaridis, M.: Wireless router system and method. US Patent no. 7529230 (2009)

    Google Scholar 

  10. Judd, M.D., Lovinggood, B.W., Tennant, D.T., Maca, G.A., Kuiper, W.P., Alford, J.L., Thomas, M.D., Veihl, J.C.: Repeaters for wireless communication systems. US Patent no. 8630581 (2014)

    Google Scholar 

  11. Pozar, D.M.: Microwave Engineering, 2nd edn, pp. 351–498. Wiley, New York (1998)

    Google Scholar 

  12. Opozda, S., Kurgan, P., Kitlinski, M.: A compact seven-section rat-race hybrid coupler incorporating PBG cells. Microw. Opt. Technol. Lett. 51, 2910–2913 (2009)

    Article  Google Scholar 

  13. Di Paolo, F.: Networks and Devices Using Planar Transmission Lines. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  14. Staras, S., Nartavicius, R., Skudutis, J., Urbanavicius, V., Daskevicius, V.: Wide-Band Slow-Wave Systems. Taylor & Francis Group, Boca Raton (2012)

    Google Scholar 

  15. Hirota, T., Minakawa, A., Muraguchi, M.: Reduced-size branch-line and rat-race hybrids for uniplanar MMICs. IEEE Trans. Microw. Theory Tech. 38, 270–275 (1990)

    Article  Google Scholar 

  16. Gillick, M., Robertson, I.D., Joshi, J.S.: Coplanar waveguide two-stage balanced MMIC amplifier using impedance-transforming lumped-distributed branchline couplers. IEEE Proc. Microw. Antennas Propag. 141, 241–245 (1994)

    Article  Google Scholar 

  17. Chiang, Y.-C., Chen, C.-Y.: Design of a wide-band lumped-element 3-dB quadrature coupler. IEEE Trans. Microw. Theory Tech. 49, 476–479 (2001)

    Article  Google Scholar 

  18. Hong, J.-S., Lancaster, M.J.: Microstrip Filters for RF/Microwave Applications. Wiley, New~York (2001)

    Book  Google Scholar 

  19. Li, Y., Zhang, Z., Li, Z., Zheng, J.: High-permittivity substrate multiresonant antenna metallic cover of laptop computer. IEEE Antennas Wirel. Propag. Lett. 10, 1092–1095 (2011)

    Article  Google Scholar 

  20. Chen, Y.-C., Hsu, C.-H.: Inverted-E shaped monopole on high-permittivity substrate for application in industrial, scientific, medical, high-performance radio local area network, unlicensed national information infrastructure, and worldwide interoperability for microwave access. IET Microw. Antennas Propag. 8, 272–277 (2014)

    Google Scholar 

  21. Awai, I., Kubo, H., Iribe, T., Wakamiya, D., Sanada, A.: An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 1085–1088 (2003)

    Google Scholar 

  22. Wu, H.-S., Tzuang, C.-K.C.: Artificially integrated synthetic rectangular waveguide. IEEE Trans. Microw. Theory Tech. 53, 2872–2881 (2005)

    Google Scholar 

  23. Elek, F., George, E.: On the slow wave behavior of the shielded mushroom structure. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 1333–1336 (2008)

    Google Scholar 

  24. Seki, S., Hasegawa, H.: Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrate. Electron. Lett. 17, 940–941 (1981)

    Article  Google Scholar 

  25. Xue, Q., Shum, K.M., Chan, C.H.: Novel 1-D microstrip PBG cells. IEEE Microw. Guid. Wave Lett. 10, 403–405 (2000)

    Article  Google Scholar 

  26. Shum, K.M., Xue, Q., Chan, C.H.: A novel microstrip ring hybrid incorporating a PBG cell. IEEE Microw. Wirel. Compon. Lett. 11, 258–260 (2001)

    Article  Google Scholar 

  27. Sun, K.-O., Ho, S.-J., Yen, C.-C., Weide, D.: A compact branch-line coupler using discontinuous microstrip lines. IEEE Microw. Wirel. Compon. Lett. 8, 519–520 (2005)

    Article  Google Scholar 

  28. Eccleston, K.W., Ong, S.H.M.: Compact planar microstripline branch-line and rat-race couplers. IEEE Trans. Microw. Theory Tech. 51, 2119–2125 (2003)

    Article  Google Scholar 

  29. Gandini, E., Ettorre, M., Sauleau, R., Grbic, A.: A lumped-element unit cell for beam-forming networks and its application to a miniaturized Butler matrix. IEEE Trans. Microw. Theory Tech. 61, 1477–1487 (2013)

    Article  Google Scholar 

  30. Mongia, R., Bahl, I., Bhartia, P.: RF and Microwave Coupler-Line Circuits. Artech House, Boston (1999)

    Google Scholar 

  31. Hou, J.-A., Wang, Y.-H.: Design of compact 90° and 180° couplers with harmonic suppression using lumped-element bandstop resonators. IEEE Trans. Microw. Theory Tech. 58, 2932–2939 (2010)

    Article  MathSciNet  Google Scholar 

  32. Brillouin, L.: Wave Propagation in Periodic Structures. McGraw-Hill Book Company, Inc., New York (1946)

    MATH  Google Scholar 

  33. Caloz, C., Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach. Wiley, Hoboken (2006)

    Google Scholar 

  34. Yang, F.-R., Ma, K.-P., Qian, Y., Itoh, T.: A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits. IEEE Trans. Microw. Theory Tech. 47, 1509–1614 (1999)

    Article  Google Scholar 

  35. Kurgan, P., Kitlinski, M.: Novel doubly perforated broadband microstrip branch-line coupler. Microw. Opt. Technol. Lett. 51, 2149–2152 (2009)

    Article  Google Scholar 

  36. Zhou, C., Yang, H.Y.D.: Design considerations of miniaturized least dispersive periodic slow-wave structures. IEEE Trans. Microw. Theory Tech. 56, 467–474 (2008)

    Article  Google Scholar 

  37. Chun, Y.-H., Hong, J.-S.: Compact wide-band branch-line hybrids. IEEE Trans. Microw. Theory Tech. 54, 704–709 (2006)

    Article  Google Scholar 

  38. Wang, J., Wang, B.-Z., Guo, Y.-X., Ong, L.C., Xiao, S.: A compact slow-wave microstrip branch-line coupler with high performance. IEEE Microw. Wirel. Compon. Lett. 17, 501–503 (2007)

    Article  Google Scholar 

  39. Kurgan, P., Kitlinski, M.: Doubly miniaturized rat-race hybrid coupler. Microw. Opt. Technol. Lett. 53, 1242–1244 (2011)

    Article  Google Scholar 

  40. Kurgan, P., Kitlinski, M.: Slow-wave fractal-shaped compact microstrip resonant cell. Microw. Opt. Technol. Lett. 52, 2613–2615 (2010)

    Article  Google Scholar 

  41. Kurgan, P., Bekasiewicz, A.: A robust design of a numerically demanding compact rat-race coupler. Microw. Opt. Technol. Lett. 56, 1259–1263 (2014)

    Article  Google Scholar 

  42. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010)

    Article  Google Scholar 

  43. Kurgan, P., Filipcewicz, J., Kitlinski, M.: Design considerations for compact microstrip resonant cells dedicated to efficient branch-line coupler miniaturization. Microw. Opt. Technol. Lett. 54, 1949–1954 (2012)

    Article  Google Scholar 

  44. Bekasiewicz, A., Kurgan, P.: A compact microstrip rat-race coupler constituted by nonuniform transmission lines. Microw. Opt. Technol. Lett. 56, 970–974 (2014)

    Article  Google Scholar 

  45. Radtke, K., Kurgan, P., Bekasiewicz, A., Kitlinski, M.: Zminiaturyzowane, planarne filtry pasmowo-przepustowe o nowej topologii. Wiadomości Elektrotechniczne 11, 34–36 (2012) (in polish)

    Google Scholar 

  46. Koziel, S., Kurgan, P.: Low-cost optimization of compact branch-line couplers and its application to miniaturized Butler matrix design. In: Eur. Microw. Conf. (2014, to appear)

    Google Scholar 

  47. Liao, S.-S., Sun, P.-T., Chin, N.-C., Peng, J.-T.: A novel compact-size branch-line coupler. IEEE Microw. Wirel. Compon. Lett. 15, 588–590 (2005)

    Article  Google Scholar 

  48. Liao, S.-S., Peng, J.-T.: Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure. IEEE Trans. Microw. Theory Tech. 54, 3508–3514 (2006)

    Article  Google Scholar 

  49. Tang, C.-W., Chen, M.-G.: Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth. IEEE Trans. Microw. Theory Tech. 55, 1926–1934 (2007)

    Article  Google Scholar 

  50. Jung, S.-C., Negra, R., Ghannouchi, F.M.: A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area. IEEE Trans. Microw. Theory Tech. 56, 2950–2953 (2008)

    Article  Google Scholar 

  51. Ahn, H.-R.: Modified asymmetric impedance transformers (MCCTs and MCVTs) and their application to impedance-transforming three-port 3-dB power dividers. IEEE Trans. Microw. Theory Tech. 59, 3312–3321 (2011)

    Article  Google Scholar 

  52. Tseng, C.-H., Chang, C.-L.: A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microw. Theory Tech. 59, 2085–2092 (2012)

    Article  Google Scholar 

  53. Kuo, J.-T., Wu, J.-S., Chiou, Y.-C.: Miniaturized rat-race coupler with suppression of spurious passband. IEEE Microw. Wirel. Compon. Lett. 17, 46–48 (2007)

    Article  Google Scholar 

  54. Mondal, P., Chakrabarty, A.: Design of miniaturized branch-line and rat-race hybrid couplers with harmonics suppression. IET Microw. Antennas Propag. 3, 109–116 (2009)

    Article  Google Scholar 

  55. Tseng, C.-H., Chen, H.-J.: Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microw. Wirel. Compon. Lett. 18, 734–736 (2008)

    Article  Google Scholar 

  56. Wang, C.-W., Ma, T.-G., Yang, C.-F.: A new planar artificial transmission line and its applications to a miniaturized Butler matrix. IEEE Trans. Microw. Theory Tech. 55, 2792–2801 (2007)

    Article  Google Scholar 

  57. Tsai, K.-Y., Yang, H.-S., Chen, J.-H., Chen, Y.-J.: A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression. IEEE Microw. Wirel. Compon. Lett. 21, 537–539 (2011)

    Article  Google Scholar 

  58. Ahn, H.-R., Nam, S.: Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits. IEEE Trans. Microw. Theory Tech. 61, 1067–1078 (2013)

    Article  Google Scholar 

  59. Chuang, M.-L.: Miniaturized ring coupler of arbitrary reduced size. IEEE Microw. Wirel. Compon. Lett. 21, 16–18 (2005)

    Article  Google Scholar 

  60. Ahn, H.-R., Kim, B.: Small wideband coupled-line ring hybrids with no restriction on coupling power. IEEE Trans. Microw. Theory Tech. 61, 1806–1817 (2009)

    Google Scholar 

  61. Lee, H.-S., Choi, K., Hwang, H.-Y.: A harmonic and size reduced ring hybrid using coupled line. IEEE Microw. Wirel. Compon. Lett. 17, 259–261 (2005)

    Article  Google Scholar 

  62. Ahn, H.-R., Nam, S.: Wide band microstrip coupled-line ring hybrids for high power-division ratios. IEEE Trans. Microw. Theory Tech. 61, 1768–1780 (2013)

    Article  Google Scholar 

  63. Collin, R.E.: Foundations for Microwave Engineering. Wiley, New York (2001)

    Book  Google Scholar 

  64. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  65. Yelten, M.B., Zhu, T., Koziel, S., Franzon, P.D., Steer, M.B.: Demystifying surrogate modeling for circuits and systems. IEEE Circuits Syst. Magazine 12, 45–63 (2012)

    Article  Google Scholar 

  66. Koziel, S., Ogurtsov, S.: Simulation-driven design in microwave engineering: methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Series: Studies in Computational Intelligence, vol. 356. Springer, Berlin (2011)

    Chapter  Google Scholar 

  67. Koziel, S.: Efficient optimization of microwave circuits using shape-preserving response prediction. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 1569–1572 (2009)

    Google Scholar 

  68. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  69. Liu, X., Wang, G., Liu, J.: A wideband model of on-chip CMOS interconnects using space-mapping technique. Int. J. RF Microw. Comput. Aid. Eng. 21, 439–445 (2011)

    Article  Google Scholar 

  70. Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 42, 2536–2544 (1994)

    Article  Google Scholar 

  71. Bakr, M.H., Bandler, J.W., Biernacki, R.M., Chen, S.H., Madsen, K.: A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 46, 2412–2425 (1998)

    Article  Google Scholar 

  72. Bakr, M.H., Bandler, J.W., Ismail, M.A., Rayas-Sanchez, J.E., Zhang, Q.-J.: Neural space-mapping optimization for EM-based design. IEEE Trans. Microw. Theory Tech. 48, 2307–2315 (2000)

    Article  Google Scholar 

  73. Koziel, S., Bandler, J.W.: A space-mapping approach to microwave device modeling exploiting fuzzy systems. IEEE Trans. Microw. Theory Tech. 55, 2539–2547 (2007)

    Article  Google Scholar 

  74. Koziel, S., Meng, J., Bandler, J.W., Bakr, M.H., Cheng, Q.S.: Accelerated microwave design optimization with tuning space mapping. IEEE Trans. Microw. Theory Tech. 57, 383–394 (2009)

    Article  Google Scholar 

  75. Xu, H.-X., Wang, G.-M., Zhang, C.-X., Yu, Z.-W., Chen, X.: Composite right/left-handed transmission line based on complementary single-split ring resonator pair and compact power dividers application using fractal geometry. IET Microw. Antennas Propag. 6, 1017–1025 (2012)

    Article  Google Scholar 

  76. Smierzchalski, M., Kurgan, P., Kitlinski, M.: Improved selectivity compact brand-stop filter with Gosper fractal-shaped defected ground structures. Microw. Opt. Technol. Lett. 52, 227–229 (2010)

    Article  Google Scholar 

  77. Bekasiewicz, A., Kurgan, P., Kitlinski, M.: New approach to a fast and accurate design of microwave circuits with complex topologies. IET Microw. Antennas Propag. 6, 1616–1622 (2012)

    Article  Google Scholar 

  78. Koziel, S., Echeverría-Ciaurri, C., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.-S. (eds.) Computational Optimization, Methods and Algorithms, pp. 33–59. Springer, Berlin (2011)

    Chapter  Google Scholar 

  79. Kurgan, P., Filipcewicz, J., Kitlinski, M.: Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microw. Antennas Propag. 6, 1291–1298 (2012)

    Article  Google Scholar 

  80. Koziel, S., Bandler, S.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  81. Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004)

    Article  Google Scholar 

  82. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Magazine 9, 105–122 (2008)

    Article  Google Scholar 

  83. Agilent ADS, Version 2011: Agilent Technologies, 395 Page Mill Road, Palo Alto, CA, 94304 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kurgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kurgan, P., Bekasiewicz, A. (2014). Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Solving Computationally Expensive Engineering Problems. Springer Proceedings in Mathematics & Statistics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-08985-0_8

Download citation

Publish with us

Policies and ethics