Skip to main content

The Energy Driven Hot Carrier Model

  • Chapter
  • First Online:
Hot Carrier Degradation in Semiconductor Devices

Abstract

The so-called “Energy Driven Model” for hot carrier effects in MOS devices was first proposed in 2005 as a replacement for the ubiquitous Lucky Electron Model (LEM) in the short channel regime (especially at or below the 130 nm node) [1]. As MOSFET size and voltage are scaled down, the carrier energy distribution becomes increasingly dependent only on the applied bias, because of quasi-ballistic transport over the high field region. The energy driven model represents a new paradigm of MOSFET hot carrier behavior in which the fundamental driving force is available energy, rather than peak lateral electric field as it is in the LEM. The model predictions are shown to be consistent with experimental impact ionization results. Experimental hot carrier degradation results for a wide range of technologies support the concept of a nearly universal carrier energy dependent cross section of hot carrier damage (Sit).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Rauch, G. La Rosa, IEEE Trans. Device Mater. Reliab., 5, 701 (2005)

    Google Scholar 

  2. C. Hu et al., IEEE Trans. Electron Devices 32, 375 (1985)

    Google Scholar 

  3. C. Guérin, IEEE Trans. Device Mater. Reliab. 7, 225 (2007)

    Google Scholar 

  4. W. Shockley, SSE 2, 65 (1961)

    Google Scholar 

  5. J. Townsend, The Theory of Ionization of Gases by Collision (Constable, London, 1910)

    Book  Google Scholar 

  6. G. Baraff, Phys. Rev. 128, 2507 (1962)

    Google Scholar 

  7. B. Ridley, J. Phys. C: Solid State Phys. 16, 3373 (1983)

    Google Scholar 

  8. N. Goldsman et al., JAP 68, 1075 (1990)

    Google Scholar 

  9. A. Pacelli et al., J. Appl. Phys. 83, 4760 (1998)

    Google Scholar 

  10. O. Rubel et al., Phys. Status Solid C 1, 1186 (2004)

    Google Scholar 

  11. S. Kasap et al., J. Appl. Phys. 96, 2037 (2004)

    Article  Google Scholar 

  12. N. Goldsman et al., IEEE Electron Device Lett. 11, 472 (1990)

    Google Scholar 

  13. P. Ko, et al., in IEEE IEDM Tech. Dig. (1981), p. 600

    Google Scholar 

  14. Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998), pp. 156ff

    Google Scholar 

  15. J. Jakumeit, U. Ravaioli, Physica B 314, 363 (2002)

    Google Scholar 

  16. M. Chang et al., in Proceedings of ESSDERC (1996), pp. 263

    Google Scholar 

  17. J. Bude, M. Mastrapasqua, IEEE Electron Device Lett. 16, 439 (1995)

    Google Scholar 

  18. F. Venturi et al., IEEE Trans. Electron Devices 38, 1895 (1991)

    Google Scholar 

  19. P. Childs, D. Dyke, SSE 48, 765 (2004)

    Google Scholar 

  20. P. Scrobahaci, IEEE Trans. Electron Devices 41, 1197 (1994)

    Google Scholar 

  21. A. Ghetti et al., IEEE Trans. Electron Devices 46, 696 (1999)

    Google Scholar 

  22. N. Sano, M. Tomizawa, IEEE Trans. Electron Devices 42, 2211 (1995)

    Google Scholar 

  23. T. Mietzner et al., IEEE Trans. Electron Devices 48, 2323 (2001)

    Google Scholar 

  24. L. Keldysh, Soviet Phys. JETP 10, 509 (1960)

    Google Scholar 

  25. Y. Kamakura et al., J. Appl. Phys. 75, 3500 (1994)

    Google Scholar 

  26. P. Childs, D. Dyke, Solid State Electron 48, 765 (2004)

    Google Scholar 

  27. S. Huang et al., in IEEE IEDM Technical Digest (2001), p. 237

    Google Scholar 

  28. S. Zanchetta et al., Solid State Electron 46, 429 (2002)

    Google Scholar 

  29. Y. Pang, J. Brews, IEEE Trans. Electron Devices 49, 2209 (2002)

    Google Scholar 

  30. Y. Taur, T. Ning, op. cit., pp. 150, 151

    Google Scholar 

  31. T. Kunikiyo et al., J. Appl. Phys. 79, 7718 (1996)

    Google Scholar 

  32. P. Childs, C. Leung, Electron. Lett. 31, 139 (1995)

    Google Scholar 

  33. P. Childs, C. Leung, J. Appl. Phys. 79, 222 (1996)

    Google Scholar 

  34. M. Chang et al., J. Appl. Phys. 82, 2974 (1997)

    Google Scholar 

  35. D. Ventura et al., Numer. Funct. Anal. Optim. 16, 565 (1995)

    Google Scholar 

  36. M. Fischetti, S. Laux, in IEEE IEDM Technical Digest (1995), p. 305

    Google Scholar 

  37. S. Rauch et al., IEEE Electron Device Lett. 19, 463 (1998)

    Google Scholar 

  38. S. Rauch et al., IEEE Trans. Device Mater. Reliab. 1, 113 (2001)

    Google Scholar 

  39. L. Su et al., in IEEE Symposium on VLSI Technology Digest (1996), p. 12

    Google Scholar 

  40. V. Chan et al., in IEEE IEDM Technical Digest (2003), p. 77

    Google Scholar 

  41. F. Arnaud et al., in IEEE IEDM Technical Digest (2009), p. 651

    Google Scholar 

  42. A. Paul et al., in IEEE IEDM Technical Digest (2013), p. 361

    Google Scholar 

  43. R. Woltjer, G. Paulzen, in IEEE IEDM Technical Digest (1992), p. 535

    Google Scholar 

  44. R. McMahon et al., in Technical Proceedings of 2002 International Conference on Modeling and Simulation of Microsystems (2002), p. 576

    Google Scholar 

  45. 6_Bravaix

    Google Scholar 

  46. S. Rauch et al., IEEE Trans. Device Mater. Reliab. 10, 40 (2010)

    Google Scholar 

  47. S. Pantelides et al., IEEE Trans. Nucl. Sci. 47, 2262 (2000)

    Google Scholar 

  48. B. Tuttle et al., Phys. Rev. B 59, 12884 (1999)

    Google Scholar 

  49. K. Hess et al., Appl. Phys. Lett. 75, 3147 (1999)

    Google Scholar 

  50. C. Van de Walle, B. Tuttle, IEEE Trans. Electron Devices 47, 1779 (2000)

    Google Scholar 

  51. B. Tuttle, W. McMahon, K. Hess, Superlattice Microstruct. 27(2/3), 229–233 (2000)

    Article  Google Scholar 

  52. K. Hess et al., Physica B 272, 527–531 (1999)

    Google Scholar 

  53. S. Rauch, G. La Rosa, in IEEE IRPS, Tutorial #124 (2010)

    Google Scholar 

  54. C. Crowell, S. Sze, Appl. Phys. Lett. 9, 242 (1966)

    Google Scholar 

  55. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart E. Rauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rauch, S.E., Guarin, F. (2015). The Energy Driven Hot Carrier Model. In: Grasser, T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08994-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08994-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08993-5

  • Online ISBN: 978-3-319-08994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics