Skip to main content

Channel Hot Carriers in SiGe and Ge pMOSFETs

  • Chapter
  • First Online:
Hot Carrier Degradation in Semiconductor Devices

Abstract

In this chapter we discuss Channel Hot Carrier (CHC) degradation in high-mobility SiGe and Ge channel pMOSFETs. For Si technologies this degradation mode is of relevance for n-channel devices, while it is often neglected for p-channel devices whose reliability is typically limited by Negative Bias Temperature Instability (NBTI). However, for Ge-based p-channel, hot carrier effects are expected to worsen due to higher hole mobility and reduced channel bandgap enhancing impact ionization.

We first discuss CHC degradation in Si pMOSFETs and compare it to NBTI degradation. We study the interplay of the two mechanisms and we show that CHC stress conditions (high gate and drain voltage) reduce the oxide electric field and in turn the NBTI degradation, and therefore do not constitute the worst degradation mode for Si p-channel devices.

In contrast to that, larger CHC degradation is found in SiGe and Ge pMOSFETs, eventually dominating over NBTI. For SiGe devices, a gate stack optimization which we have previously shown to minimize NBTI is found here to reduce also CHC degradation, ensuring sufficient reliability. Conversely, the reliability of pure Ge channel devices appears to be limited by CHC degradation. We discuss how junction engineering, and in particular halo implant optimization can enhance or mitigate CHC degradation and therefore has to be carefully considered for device reliability optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Vuillaume, Hot carrier injections in SiO2 and related instabilities in submicrometer mosfets, in Instabilities in Silicon Devices, ed. by G. Barbottin, A. Vapaille, vol. 3 (Elsevier, Amsterdam, 1999), pp. 265–339

    Google Scholar 

  2. V. Huard, M. Denais, C. Parthasarathy, NBTI degradation: from physical mechanism to modeling. Microelectron. Reliab. 46(1), 1–23 (2006)

    Article  Google Scholar 

  3. T. Grasser et al., The paradigm shift in understanding the bias temperature instability: from reaction–diffusion to switching oxide traps. IEEE Trans. Electron Devices 58(11), 3652–3666 (2011)

    Article  Google Scholar 

  4. M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era, in Proceedings of the IEEE International Electron Device Meeting (IEDM) (2011), pp. 1.1.1–6

    Google Scholar 

  5. K.J. Kuhn, Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)

    Article  Google Scholar 

  6. J. Franco et al., SiGe channel technology: superior reliability toward ultra-thin EOT devices. Part I: NBTI. IEEE Trans. Electron Devices 60(1), 396–404 (2013)

    Article  Google Scholar 

  7. J. Franco, et al., Understanding the suppressed charge trapping in relaxed- and strained-Ge/SiO2/HfO2 pMOSFETs and implications for the screening of alternative high-mobility substrate/dielectric CMOS gate stacks, in Proceedings of the IEEE International Electron Device Meeting (IEDM) (2013), pp. 15.2.1–4

    Google Scholar 

  8. International Technology Roadmap for Semiconductors, available at http://public.itrs.net

    Google Scholar 

  9. M. Meuris et al., The IMEC clean: a new concept for particle and metal removal on Si surfaces. Solid State Technol. 38(7), 109–113 (1995)

    Google Scholar 

  10. J. Franco, et al., 6Å EOT Si0.45Ge0.55 pMOSFET with optimized reliability (VDD = 1V): meeting the NBTI lifetime target at ultra-thin EOT, in Proceedings of the IEEE International Electron Device Meeting (IEDM) (2010), pp. 70–73

    Google Scholar 

  11. J. Franco et al., NBTI reliability of SiGe and Ge channel pMOSFETs with SiO2/HfO2 dielectric stack. IEEE Trans. Device Mater. Reliab. 13(4), 497–506 (2013)

    Article  Google Scholar 

  12. D. Maji et al., Understanding and optimization of hot-carrier reliability in germanium-on-silicon pMOSFETs. IEEE Trans. Electron Devices 56(5), 1063–1069 (2009)

    Article  Google Scholar 

  13. W.-Y. Loh, et al., The effects of Ge composition and Si cap thickness on hot carrier reliability of Si/Si1−xGex/Si p-MOSFETs with high-K/metal gate, in Proceedings of the IEEE Symposium on VLSI Technology (2008), pp. 56–57

    Google Scholar 

  14. 12.1.3_Cho

    Google Scholar 

  15. E. Amat, et al., Channel hot-carrier degradation under static stress in short channel transistors with high-k/metal gate stacks, in Proceedings of the IEEE International Conference on Ultimate Integration on Silicon (ULIS) (2008), pp. 103–106

    Google Scholar 

  16. B. Kaczer, et al., Ubiquitous relaxation in BTI stressing – new evaluation and insights, in Proceedings of the IEEE International Reliability Physics Symposium (IRPS) (2008), pp.20–27

    Google Scholar 

  17. T. Grasser, et al., Simultaneous extraction of recoverable and permanent components contributing to bias-temperature instability, in Proceedings of the IEEE International Electron Device Meeting (IEDM) (2007), pp. 801–804

    Google Scholar 

  18. A. Lacaita, Why the effective temperature of the hot electron tail approaches the lattice temperature. Appl. Phys. Lett. 59(13), 1623–1625 (1991)

    Article  Google Scholar 

  19. 8.2_Tyaginov

    Google Scholar 

  20. Taurus Medici User Guide (2007) ed. A-2007.12

    Google Scholar 

  21. A. Teramoto, R. Kuroda, T. Ohmi, NBTI mechanism based on hole-injection for accurate lifetime prediction. Trans. Electrochem. Soc. 6(3), 229–243 (2007)

    Google Scholar 

  22. M.G. Ancona, N.S. Saks, D. McCarthy, Lateral distribution of hot-carrier-induced interface traps in MOSFETs. IEEE Trans. Electron Devices 35(12), 2221–2228 (1988)

    Article  Google Scholar 

  23. 3.6_Aichinger

    Google Scholar 

  24. R. Mishra, et al., On the interaction of ESD, NBTI and HCI in 65nm technology, in Proceedings of the IEEE International Reliability Physics Symposium (IRPS) (2007), pp. 17–22

    Google Scholar 

  25. C. Guerin, et al., Combined effect of NBTI and channel hot carrier effects in pMOSFETs, in Proceedings of the IEEE International Integrated Reliability Workshop (IIRW) (2005), pp.10–16

    Google Scholar 

  26. C.-H. Jeon, S.-Y. Kim, C.-B. Rim, The impact of NBTI and HCI on deep sub-micron pMOSFETs’ lifetime, in Proceedings of the IEEE International Integrated Reliability Workshop (IIRW) (2002), pp. 130–132

    Google Scholar 

  27. B. De Jaeger, G. Nicholas, D.P. Brunco, G. Eneman, M. Meuris, M. Heyns, High performance high-k/metal gate Ge pMOSFETs with gate lengths down to 125 nm and halo implant, in Proceedings of the European Solid-State Device Research Conference (ESSDERC) (2007)

    Google Scholar 

  28. G. Eneman, M. Wiot, A. Brugere, O.S.I. Casain, S. Sonde, D.P. Brunco, B. De Jaeger, A. Satta, G. Hellings, K. De Meyer, C. Claeys, M. Meuris, M. Heyns, E. Simoen, Impact of donor concentration, electric field, and temperature effects on the leakage current in germanium p+/n junctions. IEEE Trans. Electron Dev. 55(9), 2287–2296 (2008)

    Article  Google Scholar 

  29. G. Eneman, B. De Jaeger, E. Simoen, D.P. Brunco, G. Hellings, J. Mitard, K. De Meyer, M. Meuris, M. Heyns, Quantification of drain extension leakage in a scaled bulk germanium PMOS technology. IEEE Trans. Electron Dev. 56(12), 3115–3122 (2009)

    Article  Google Scholar 

  30. C. Hu, S.C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, K.W. Terrill, Hot-electron-induced MOSFET degradation—model, monitor, and improvement. IEEE Trans. Electron Dev. 32(2), 375–385 (1985). doi:10.1109/T-ED.1985.21952

    Article  Google Scholar 

  31. Sentaurus Process Reference Manual (2006), ed. X-2006.06

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franco, J., Kaczer, B. (2015). Channel Hot Carriers in SiGe and Ge pMOSFETs. In: Grasser, T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08994-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08994-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08993-5

  • Online ISBN: 978-3-319-08994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics