Skip to main content

Electric Fields and Their Detection in Photorefractive Crystals

  • Chapter
  • First Online:
Photorefractive Optoelectronic Tweezers and Their Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 479 Accesses

Abstract

Photorefractive crystals will be introduced in this chapter as a class of materials that can be used for the creation of virtual electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.F. Gonzalez, V.T. Remcho, Fabrication and evaluation of a ratchet type dielectrophoretic device for particle analysis. J. Chromat. A 1216(52), 9063–9070 (2009)

    Article  Google Scholar 

  2. P. Chiou, A. Ohta, M. Wu, Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005)

    Article  ADS  Google Scholar 

  3. M.C. Wu, Optoelectronic tweezers. Nat. Photonics 5(6), 322–324 (2011)

    Article  ADS  Google Scholar 

  4. M. Esseling, F. Holtmann, M. Woerdemann, C. Denz, Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system. Opt. Express 18(16), 17404–17411 (2010)

    Article  Google Scholar 

  5. S. Glaesener, M. Esseling, C. Denz, Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate. Opt. Lett. 37(18), 3744–3746 (2012)

    Article  ADS  Google Scholar 

  6. A. Ashkin, G. Boyd, J. Dziedzic, R. Smith et al., Optically-induced refractive index inhomogeneities in LiNbO\(_3\) and LiTaO\(_3\). Appl. Phys. Lett. 9, 72–74 (1966)

    Article  ADS  Google Scholar 

  7. F. Chen, Optically induced change of refractive indices in LiNbO\(_3\) and LiTaO\(_3\). J. Appl. Phys. 40(8), 3389 (1969)

    Article  ADS  Google Scholar 

  8. R. Townsend, J. LaMacchia, Optically induced refractive index changes in batio3. J. Appl. Phys. 41, 5188–5192 (1970)

    Article  ADS  Google Scholar 

  9. G. Lesaux, G. Roosen, A. Brun, Observation and analysis of the fast photorefractive process in BSO. Opt. Commun. 56(6), 374–378 (1986)

    Article  ADS  Google Scholar 

  10. L. Yu, W. Chan, Z. Peng, A. Gharavi, Multifunctional polymers exhibiting photorefractive effects. Acc. Chem. Res. 29(1), 13–21 (1996)

    Article  Google Scholar 

  11. K. Buse, Light-induced charge transport processes in photorefractive crystals II: materials. Appl. Phys. B Lasers Opt. 64(4), 391–407 (1997)

    Article  ADS  Google Scholar 

  12. A. Glass, D. Linde, T. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO\(_3\). Appl. Phys. Lett. 25(4), 233–235 (1974)

    Article  ADS  Google Scholar 

  13. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993)

    Google Scholar 

  14. B. Sturman, V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach Science, New York, 1992)

    Google Scholar 

  15. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin et al., Holographic storage in electrooptic crystals 1: steady state. Ferroelectrics 22, 949–960 (1979)

    Article  Google Scholar 

  16. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin et al., Holographic storage in electrooptic crystals 2: beam coupling—light amplification. Ferroelectrics 22, 961–964 (1979)

    Article  Google Scholar 

  17. M. Clark, F. Disalvo, A. Glass, G. Peterson, Electronic structure and optical index damage of iron-doped lithium-niobate. J. Chem. Phys. 59(12), 6209–6219 (1973)

    Article  ADS  Google Scholar 

  18. D. Bryan, R. Rice, R. Gerson, H. Tomaschke et al., Magnesium-doped lithium-niobate for higher optical power applications. Opt. Eng. 24(1), 138–143 (1985)

    Article  Google Scholar 

  19. O. Schirmer, O. Thiemann, M. Wohlecke, Defects in LiNbO\(_3\)-I. Experimental aspects. J. Phys. Chem. Solids 52(1), 185–200 (1991)

    Article  ADS  Google Scholar 

  20. B. Wechsler, M. Klein, C. Nelson, R. Schwartz, Spectroscopic and photorefractive properties of infrared-sensitive Rhodium-doped barium-titanate. Opt. Lett. 19(8), 536–538 (1994)

    Article  ADS  Google Scholar 

  21. K. Peithmann, J. Hukriede, K. Buse, E. Kratzig, Photorefractive properties of LiNbO3 crystals doped by copper diffusion. Phys. Rev. B: Condens. Matter Mater. Phys. 61(7), 4615–4620 (2000)

    Article  ADS  Google Scholar 

  22. A. Egorysheva, V. Burkov, Y. Kargin, A. Vasil’ev et al., Spectroscopic properties of Bi12SiO20 and Bi12OTiO20 crystals doped with Mn, Mn\(+\)P, Cr\(+\)P, Cr\(+\)Ga, and Cr\(+\)Cu. Inorg. Mater. 37(8), 817–824 (2001)

    Article  Google Scholar 

  23. M. Carrascosa, F. Agullo-Lopez, Erasure of holographic gratings in photorefractive materials with 2 active species. Appl. Opt. 27(14), 2851–2857 (1988)

    Article  ADS  Google Scholar 

  24. M. Bashaw, T. Ma, R. Barker, S. Mroczkowski et al., Theory of complementary holograms arising from electron-hole transport in photorefractive media. J. Opt. Soc. Am. B: Opt. Phys. 7(12), 2329–2338 (1990)

    Article  ADS  Google Scholar 

  25. M. Bashaw, M. Jeganathan, L. Hesselink, Theory of 2-center transport in photorefractive media for low-intensity continuous-wave illumination in the quasy-steady-state-limit. J. Opt. Soc. Am. B: Opt. Phys. 11(9), 1743–1757 (1994)

    Article  ADS  Google Scholar 

  26. K. Peithmann, A. Wiebrock, K. Buse, Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared. Appl. Phys. B: Lasers Opt. 68(5), 777–784 (1999)

    Article  ADS  Google Scholar 

  27. A. Zaltron, M. Bazzan, N. Argiolas, M.V. Ciampolillo et al., Depth-resolved photorefractive characterization of lithium niobate doped with iron by thermal diffusion. Appl. Phys. B: Lasers Opt. 108(3), 657–663 (2012)

    Article  ADS  Google Scholar 

  28. M. Petrov, V. Bryksin, Space-charge waves in sillenites: rectification and second-harmonic generation, in Photorefractive Materials and Their Applications 2: Materials, ed. by P. Günter, J.-P. Huignard (Springer, Berlin, 2007), pp. 285–325

    Chapter  Google Scholar 

  29. S. Stepanov, M. Petrov, Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric-field. Opt. Commun. 53(5), 292–295 (1985)

    Article  ADS  Google Scholar 

  30. P. Günter, J. Huignard, Photorefractive Materials and Their Applications 2 (Springer, Berlin, 2007)

    Book  Google Scholar 

  31. G. Yu, J. Gao, J. Hummelen, F. Wudl et al., Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)

    Article  ADS  Google Scholar 

  32. D. Chapin, C. Fuller, G. Pearson, A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954)

    Article  ADS  Google Scholar 

  33. H. Festl, P. Hertel, E. Kratzig, R. von Baltz, Investigations of the photo-voltaic tensor in doped LiNbO\(_3\). Phys. Status Solidi A 113(1), 157–164 (1982)

    Article  Google Scholar 

  34. H. Heyszenau, Electron-transport in bulk photo-voltaic effect. Phys. Rev. B: Condens. Matter Mater. Phys. 18(4), 1586–1592 (1978)

    Article  ADS  Google Scholar 

  35. Y. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  36. B. Saleh, M. Teich, Fundamental of Photonics (Wiley Interscience, New York, 2007)

    Google Scholar 

  37. A. Ashkin, J. Dziedzic, P. Smith, Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett. 7(6), 276–278 (1982)

    Article  ADS  Google Scholar 

  38. J. Nye, Physical Properties of Crystals (Oxford Science, Oxford, UK, 1985)

    Google Scholar 

  39. J. Zook, D. Chen, G. Otto, Temperature dependence and model of electro-optic effect in LiNbO\(_3\). Appl. Phys. Lett. 11(5), 159–161 (1967)

    Article  ADS  Google Scholar 

  40. K. Onuki, N. Uchida, T. Saku, Interferometric method for measuring electrooptic coefficients in crystals. J. Opt. Soc. Am. 62(9), 1030–1032 (1972)

    Article  ADS  Google Scholar 

  41. A. Grunnet-Jepsen, I. Aubrecht, L. Solymar, Investigation of the internal field in photorefractive materials and measurement of the effective electrooptic coefficient. J. Opt. Soc. Am. B: Opt. Phys. 12(5), 921–929 (1995)

    Article  ADS  Google Scholar 

  42. R. Aldrich, S. Hou, M. Harvill, Electrical and optical properties of Bi12SiO20. J. Appl. Phys. 42, 493–494 (1971)

    Article  ADS  Google Scholar 

  43. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1963)

    MATH  Google Scholar 

  44. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984)

    Google Scholar 

  45. P. Pellatfinnet, Measurement of the electro-optic coefficient of BSO crystals. Opt. Commun. 50(5), 275–280 (1984)

    Article  ADS  Google Scholar 

  46. M. Henry, S. Mallick, D. Rouede, L. Celaya et al., Propagation of light in an optically-active electrooptic crystal of BI12SIO20—measurement of the electrooptic coefficient. J. Appl. Phys. 59(8), 2650–2654 (1986)

    Article  ADS  Google Scholar 

  47. P. Foote, T. Hall, Influence of optical-activity on 2 beam coupling-constants in photorefractive BI12SIO20. Opt. Commun. 57(3), 201–206 (1986)

    Article  ADS  Google Scholar 

  48. J. den Herder, A. Brinkman, S. Kahn, G. Branduardi-Raymont et al., The reflection grating spectrometer on board XMM-Newton. Astron. Astrophys. 365(1), L7–L17 (2001)

    Article  ADS  Google Scholar 

  49. W. Friedrich, P. Knipping, M. Laue, Interferenzerscheinungen bei Röntgenstrahlen. Ann. Phys. 4, 971–988 (1913)

    Article  Google Scholar 

  50. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40(2), 178–180 (1982)

    Article  ADS  Google Scholar 

  51. G. Binnig, C. Quate, C. Gerber, Atomic force microscopy. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  ADS  Google Scholar 

  52. H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909–2947 (1969)

    Article  Google Scholar 

  53. S. Breer, K. Buse, K. Peithmann, H. Vogt et al., Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals. Rev. Sci. Instrum. 69(4), 1591–1594 (1998)

    Article  ADS  Google Scholar 

  54. E. Hecht, Optik (Oldenbourg, Munich, 2002)

    Google Scholar 

  55. F. Zernike, How I discovered phase contrast. Science 121, 345–349 (1955)

    Article  ADS  Google Scholar 

  56. D. Murphy, M. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, 2nd edn. (Wiley-Blackwell, New York, 2013)

    Google Scholar 

  57. J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts and Company, Greenwood Village, Colorado, 2005)

    Google Scholar 

  58. J. Glückstad, D. Palima, Generalized Phase Contrast (Springer, Dordrecht, 2009)

    Google Scholar 

  59. U. Schnars, W. Juptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)

    Article  ADS  Google Scholar 

  60. E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291–293 (1999)

    Article  ADS  Google Scholar 

  61. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini et al., Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography. Opt. Lett. 30, 1671–1673 (2005)

    Article  ADS  Google Scholar 

  62. T. Ikeda, G. Popescu, R. Dasari, M. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30(10), 1165–1167 (2005)

    Article  ADS  Google Scholar 

  63. M. Esseling, S. Glaesener, F. Volonteri, C. Denz, Opto-electric particle manipulation on a bismuth silicon oxide crystal. Appl. Phys. Lett. 100(16), 161903 (2012)

    Article  ADS  Google Scholar 

  64. M. Esseling, A. Zaltron, N. Argiolas, G. Nava et al., Highly reduced iron-doped lithium niobate for opto-electronic tweezers. Appl. Phys. B: Lasers Opt. 113(2), 191–197 (2013)

    Article  ADS  Google Scholar 

  65. E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39(23), 4070–4075 (2000)

    Article  ADS  Google Scholar 

  66. W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, Digital in-line holography of microspheres. Appl. Opt. 41(25), 5367–5375 (2002)

    Article  ADS  Google Scholar 

  67. B. Javidi, D. Kim, Three-dimensional-object recognition by use of single-exposure on-axis digital holography. Opt. Lett. 30(3), 236–238 (2005)

    Article  ADS  Google Scholar 

  68. K. Nugent, Twin-image elimination in Gabor holography. Opt. Commun. 78(3–4), 293–299 (1990)

    Article  ADS  Google Scholar 

  69. B. Kemper, G. von Bally, Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 47(4), A52–A61 (2008)

    Article  ADS  Google Scholar 

  70. Holoeye AG, HED 6001 Display Webpage (2013)

    Google Scholar 

  71. U. Kiencke, H. Jäkel, Signale und Systeme (Oldenbourg, Munich, 2002)

    Google Scholar 

  72. J. Ohm, H. Lüke, Signalübertragung—Grundlagen der Digitalen und Analogen Nachrichtenübertragungssysteme (Springer, Berlin, 2007)

    Google Scholar 

  73. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998)

    MATH  Google Scholar 

  74. R. Cusack, N. Papadakis, New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 16(3, 1), 754–764 (2002)

    Article  Google Scholar 

  75. D. Meschede, Gerthsen Physik (Springer, Berlin, 2001)

    Google Scholar 

  76. P. Tipler, G. Mosca, Physik (Elsevier, Munich, 2007)

    Google Scholar 

  77. J. Cooley, J. Tukey, An algorithm for machine calculation of complex Fourier series. Math. Comput. 19(90), 297 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esseling .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esseling, M. (2015). Electric Fields and Their Detection in Photorefractive Crystals. In: Photorefractive Optoelectronic Tweezers and Their Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09318-5_3

Download citation

Publish with us

Policies and ethics