Skip to main content

Summary and Conclusion: Problems and Prospects

  • Chapter
  • First Online:
Solar Cosmic Rays

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 405))

  • 1280 Accesses

Abstract

In the above Chapters the author attempted to summarize copious data on solar cosmic rays (SCR) and relevant solar, interplanetary and geophysical observations, to demonstrate the importance of solar energetic particles (SEPs) for a number of fundamental astrophysical and geophysical problems. Their applications to the tasks of practical astronautics also have been briefly discussed. One of the main goal of this book was to describe different (sometimes contradictory) approaches to the interpretation of those data and to the simulation of space plasma processes involved, at the contemporary (up-to-dated) level of our understanding of the particle acceleration at the Sun and SEP propagation in the interplanetary magnetic field (IMF). The author apologizes if some results of numerous space researchers were given rather briefly, or were not mentioned at all. Below we try to concentrate on actual problems in the study of SCRs, their sources, mechanisms of acceleration, and related theoretical, observational, and methodological issues. Especially, we pay attention to some unresolved, forgotten, and/or neglected problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimov VV, Ambroz P, Belov AV et al (in all 13 authors) (1996) Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma-ray flare on June 15, 1991. Solar Phys 166:107–134

    Google Scholar 

  • Arkhangelskaja IV, Kotov YD, Arkhangelsky AI, Glyanenko AS (2009a) Thin structure of temporal profiles of solar flares January 15, 17 and 20, 2005 by data of AVS-F apparatus onboard CORONAS-F satellite. Adv Space Res 43(4):542–546

    ADS  Google Scholar 

  • Arkhangelskaja IV, Arkhangelsky AI, Kotov YuD et al (in all 5 authors) (2009b) AVS-F observations of γ-ray emission during January 20, 2005 solar flare up to 140 MeV. Adv Space Res 43(4):589–593

    Google Scholar 

  • Arkhangelskaja IV, Arkhangelsky AI, Troitskaya EV, Miroshnichenko LI (2009c) The investigation of powerful solar flares characteristics by analysis of excited states of 12C and various neutrons capture lines. Adv Space Res 43(4):594–599

    ADS  Google Scholar 

  • Armstrong TP, Haggerty D, Lanzerotti LJ et al (in all 14 authors) (1994) Observation by Ulysses of hot (~270 keV) coronal particles at 32° south heliolatitude and 4.6 AU. Geophys Res Lett 21(17):1747–1750

    Google Scholar 

  • Aschwanden MJ (2012) GeV particle аcceleration in solar flares and Ground Level Enhancement (GLE) events. Space Sci Rev 171:3–21

    ADS  Google Scholar 

  • Aschwanden MJ, Brown JC, Kontar EP (2002) Chromospheric height and density measurements in a solar flare observed with RHESSI – II. Data Anal Solar Phys 210:383–405

    ADS  Google Scholar 

  • Avrett CW (1981) Models of the Solar Atmosphere. In: Cram LE, Thomas JH (eds) The physics of sunspots. AURA, Sacramento Peak Observatory, pp 235–254

    Google Scholar 

  • Band D, Matteson J, Ford L, Schaefer B, Palmer D, Teegarden B, Cline T, Briggs M, Paciesas W, Pendleton G, Fishman G, Kouveliotou C, Meegan C, Wilson R, Lestrade P (1993) BATSE observations of gamma-ray burst spectra. I – Spectral diversity. Astrophys J 413:281–292. doi:10.1086/172995

    ADS  Google Scholar 

  • Bazilevskaya GA (2009) On the early phase of relativistic solar particle events: are there signatures of acceleration mechanism? Adv Space Res 43:530–536

    ADS  Google Scholar 

  • Berezhko EG, Petukhov SI, Taneev SN (2001) Acceleration of solar cosmic rays by shock waves in the solar corona. Izv RAN Phys Ser 64(3):339–342

    Google Scholar 

  • Bieber JW, Evenson PA (1995) Spaceship Earth – an optimized network of neutron monitors. In: Proceedings of 24th internation cosmic ray conference, vol 4. Rome, pp 1316–1319

    Google Scholar 

  • Bieber JW, Clem J, Evenson P, Pyle R, Sáiz A, Ruffolo D (2013a) Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations. Astrophys J 771:92 (13pp). doi:10.1088/0004-637X/771/2/922,3

  • Vashenyuk EV, Pchelkin VV (1998) The GLE of September 29, 1989 study by computations and experimental data analysis. In: Medina J (ed) Rayos comicos-98 (proceedings of 16th European cosmic ray symposium). Alcala University Press, Alcalá de Henares, pp 145–148

    Google Scholar 

  • Borog VV, Burinsky AYu, Dronov VV, Gvozdev AV, Dronov VV, Petrukhin AA (1995) Large aperture muon hodoscope for studies in solar-terrestrial physics. In: Proceedings of 24th international cosmic ray conference, vol 4. Rome, pp 1291–1294

    Google Scholar 

  • Borog VV, Burinsky AYu, Gvozdev AV (1997) Angular and temporary cosmic ray muon flux characteristics with large aperture scintillation hodoscope. In: Proceedings of 25th international cosmic ray conference, vol 2. Durban, pp 449–452

    Google Scholar 

  • Bulanov SV, Kurnosova LV, Ogulchansky YY, Razorenov LA, Fradkin MI (1985) Acceleration of ultrarelativistic electrons in solar flares. Astron Lett Russia 11(5):383–389

    Google Scholar 

  • Cessateur G, Kretzschmar M, Dudok de Wit T, Boumier P (2010) The influence of solar flares on the lower solar atmosphere: evidence from the Na D absorption line measured by GOLF/SOHO. Solar Phys 263:153–162

    ADS  Google Scholar 

  • Chupp EL, Debrunner H, Flückiger E, Forrest DJ, Golliez F, Kanbach G, Vestrand WT, Cooper J, Share GH (1987) Solar neutrons emissivity during the large solar flare on 1982 June 3. Astrophys J 318:913–925

    ADS  Google Scholar 

  • Cliver EW (1996) Solar flare gamma-ray emission and energetic particles in space. In: Ramaty R, Mandzhavidze N, Hua X-M (eds) High energy solar physics, vol 374, AIP conference proceedings. AIP, New York, pp 45–60

    Google Scholar 

  • Cliver EW (2009) History of research on solar energetic particle (SEP) events: the evolving paradigm. In: Gopalswamy N, Webb DF (eds) Proceedings of IAU symposium no. 257, 2008, Universal Heliophysical Processes. pp 401–412

    Google Scholar 

  • Cliver EW, Kahler SW, Shea MA, Smart DF (1982) Injection onsets of ~2 GeV protons, ~1 MeV electrons, and ~100 keV electrons in solar cosmic ray flares. Astrophys J 260:362–370

    ADS  Google Scholar 

  • Cliver EW, Dröge W, Müller-Mellin R (1993a) Superevents and cosmic ray modulation, 1974–1985. J Geophys Res 98(A9):15231–15240

    ADS  Google Scholar 

  • Cliver EW, Ling AG, Belov A, Yashiro S (2012) Size distributions of solar flares and solar energetic particles events. Astrophys J Lett 756:L29 (4 pp)

    ADS  Google Scholar 

  • Cliver EW, Tylka AJ, Dietrich WF, Ling AG (2014) On a solar origin for the cosmogenic nuclide event of 775AD. Astrophys J 781:32. doi:10.1088/0004-637X/781/1/32

    ADS  Google Scholar 

  • De Jager C, de Jonge G (1978) Properties of elementary flare bursts. Solar Phys 58(1):127–137

    ADS  Google Scholar 

  • De La Beaujardière J-F, Canfield RC, Hudson HS, Wülser J-P, Acton L, Kosugi T, Masuda S (1995) The 1991 October 24 flare: a challenge for standard models. Astrophys J 440:386–393

    ADS  Google Scholar 

  • Debrunner H, Flückiger E, Chupp EL, Forrest DJ (1983) The solar cosmic ray event on 1982 June 3. In: Proceedings of 18th international cosmic ray conference, vol 4. Bangalore, pp 75–78

    Google Scholar 

  • Dennis BR, Emslie AG, Hudson HS (eds) (2011) High-energy aspects of solar flares (A RHESSI-inspired monograph). http://arxiv.org/abs/1109.5831

  • Dorman LI (1957) Cosmic ray variations. Moscow, Gostekhteorizdat, 429 pp (in Russian). English version: Transl Techn. Doc. Liaison Office, Wright-Patterson Airforce Base, USA, 1958

    Google Scholar 

  • Dorman LI, Miroshnichenko LI (1968) Solar cosmic rays. Moscow, Nauka, Fizmatgiz, pp 468 (in Russian). English Edition for NASA by Indian National Scientific Documentation Center, Delhi, 1976

    Google Scholar 

  • Dröge W, Müller-Mellin B, Cliver EW (1992) Superevents: their origin and propagation through the heliosphere from 0.3-35 AU. Astrophys J Lett 387:L97–L100

    ADS  Google Scholar 

  • Dunphy PP, Chupp EL, Bertsch DL, Schneid EJ, Gottesman SR, Kanbach G (1999) Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991. Solar Phys 187(1):45–57

    ADS  Google Scholar 

  • Elliot H (1964) The nature of solar flare. Planet Space Sci 12(6):657–660

    ADS  Google Scholar 

  • Feynman J (1997) Proton fluence prediction models. In: Heckman G, Marubashi K, Shea MA, Smart DF, Thompson R (eds) Solar-terrestrial prediction-V, proc. of a workshop at Hitachi, Japan, January 23–27, 1996. RWC Tokyo, Hiraiso Solar Terrestrial Research Center, Communications Research Laboratory, Hitachinaka, pp 457–469

    Google Scholar 

  • Feynman J, Spitale G, Wang J, Gabriel S (1993) Interplanetary proton fluence model: JPL 1991. J Geophys Res 98(A8):13281–13294

    ADS  Google Scholar 

  • Firoz KA, Cho K-S, Hwang J et al (2010) Characteristics of ground-level enhancement- associated solar flares, coronal mass ejections, and solar energetic particles. J Geophys Res 115:A09105

    ADS  Google Scholar 

  • Flückiger EO (1991) Solar cosmic rays. Nucl Phys B Proc Suppl 22:1–20

    ADS  Google Scholar 

  • Flückiger EO (1994) Open questions in the analysis and interpretation of neutron monitor data. In: 14th European cosmic ray symposium, Balatonfured, Hungary, August 28–September 3, 1994. Symposium program and abstracts. Contributed paper 1-SH-13C. Balatonfured

    Google Scholar 

  • Flückiger EO (2009) Ground level events and terrestrial effects (cutoffs, cosmic rays in the atmosphere, cosmogenic nuclides). In: Caballero R, D’Olivo JC, Medina-Tanco G, Valdés-Galicia JF (eds) Proceedings of the 30th international cosmic ray conference, vol 6. Universidad Nacional Autonóma de México, Mexico City, pp 239–253

    Google Scholar 

  • Flückiger EO, Butikofer R, Muraki Y, Matsubara Y, Koi T, Tsuchiya H, Hoshida T, Sako T, Sakai T (1998) A new solar neutron telescope at Gornergrat. In: Medina J (ed) Rayos cosmicos-98 (proc. 16th European Cosmic Ray Symposium Alcala University Press, Spain). Departamento de Física. Universidad de Alcalá, Alcalá de Henares, pp 219–222

    Google Scholar 

  • Gan W, Kuzhevskij BM, Miroshnichenko LI, Troitskaia EV (2003) Time profile of the 2.223 MeV line emission and some features of the 16 December 1988 solar event. In: Proceeding ISCS 2003 symposium, “Solar variability as an input to the earth’s environment”, Tatranska Lomnica, Slovakia, ESA SP-535, pp 655–657

    Google Scholar 

  • Gingerich O, Noyes RW, Kalkofen W, Cuny Y (1971) The Harvard-Smithsonian reference atmosphere. Solar Phys 18:347–365

    ADS  Google Scholar 

  • Gopalswamy N, Nitta NV (2012) Preface. Space Sci Rev 171:1–2

    ADS  Google Scholar 

  • Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin IG (2012) Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci Rev 171:23–60

    ADS  Google Scholar 

  • Heckman GR (1997) Radiation working group report. In: Heckman G, Marubashi K, Shea MA, Smart DF, Thompson R (eds) Solar-terrestrial prediction-V. Proceeding of a workshop at Hitachi, RWC Tokyo, Hiraiso Solar Terrestrial Research Center, Communications Research Laboratory, Hitachinaka, Ibaraki, pp 18–21, 23–27 Jan 1996

    Google Scholar 

  • Hofer MY, Flückiger EO (1998) Cosmic ray spectral and directional variations near the Earth during the 24 March 1991 Forbush decrease. In: Medina J (ed) Rayos cosmicos-98 (Proceeding of 16th European cosmic ray symposium, Alcala University Press), pp 79–82

    Google Scholar 

  • Hrushka J, Shea MA, Smart DF, Heckman G, Hirman JW, Coles GL Jr (1993) Overview of the solar-terrestrial predictions workshop-IV. In: Hrushka J, Shea MA, Smart DF, Heckman G (eds) Solar-terrestrial prediction-IV, proceeding of a workshop at Ottawa, vol 1. NOAA ERL, Boulder, Co., pp 3–10, 18–22 May 1992

    Google Scholar 

  • Hua X-M, Kozlovsky B, Lingenfelter RE, Ramaty R, Stupp A (2002) Angular and energy-dependent neutron emission from solar flare magnetic loops. Astrophys J Suppl 140:563–579

    ADS  Google Scholar 

  • Hudson HS (2010) Solar flares add up. Nat Phys 6:637–638.[DOI], [ADS]

    MathSciNet  Google Scholar 

  • Hurford GJ, Schwartz RA, Krucker S, Lin RP, Smith DM, Vilmer N (2003) First gamma-ray images of a solar flare. Astrophys J Lett 595:L77–L80

    ADS  Google Scholar 

  • Kahler SW (1982) The role of the big flare syndrome in correlation of solar energetic proton fluxes and associated microwave bursts parameters. J Geophys Res 87(A5):3439–3448

    ADS  Google Scholar 

  • Kahler SW, Sheeley NR Jr, Howard RA, Koomen MJ, Michels DJ, McGuire RE, von Rosenvinge TT, Reames DV (1984) Associations between coronal mass ejections and solar energetic proton events. J Geophys Res 89(A11):9683–9693

    ADS  Google Scholar 

  • Kahler SW, Simnett GM, Reiner MJ (2003) Onsets of solar cycle 23 ground level events as probes of solar energetic particle injections at the Sun. In: Proceeding of 28th international cosmic ray conference, vol 6. Tsukuba, pp 3415–3418

    Google Scholar 

  • Kahler SW, Cliver EW, Tylka AJ, Dietrich WF (2012) A comparison of ground level event e/p and Fe/O ratios with associated solar flare and CME characteristics. Space Sci Rev 171:121–139

    ADS  Google Scholar 

  • Kallenrode M-B, Cliver EW (2001a) Rogue SEP events: observational aspects. In: Proceedings of 27th international cosmic ray conference, vol 8. Hamburg, pp 3314–3317

    Google Scholar 

  • Kallenrode M-B, Cliver EW (2001b) Rogue SEP events: modeling. In: Proceedings 27th international cosmic ray conference, vol 8. Hamburg, pp 3318–3321

    Google Scholar 

  • Kanbach G, Bertsch DL, Fichtel CE et al (in all 19 authors) (1993) Detection of a long- duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astron Astrophys Suppl Ser. 97:349–353

    Google Scholar 

  • Kepko L, Spence H, Smart DF, Shea MA (2009) Interhemispheric observations of impulsive nitrate enhancements associated with the four large ground-level solar cosmic ray events (1940–1950). J Atm Solar-Terr Phys 71:1840–1845

    ADS  Google Scholar 

  • Kichigin GN, Miroshnichenko LI, Sidorov VI, Yazev SA (2010) Peculiarities of the major solar event of 23 July 2002: source model for energetic particles. In: Stepanov AV (ed) Solar and solar- terrestrial physics-2010. Pulkovo, Sankt Petersburg, pp 201–204

    Google Scholar 

  • Kichigin GN, Miroshnichenko LI, Sidorov VI, Yazev SA (2014) Dynamics of accelerated ions in coronal loops and model of a gamma-ray source. ISSN 1063-780X. Plasma Phys Rep 40(3):178–193

    ADS  Google Scholar 

  • Kiener J, Gros M, Tatischeff V, Weidenspointner G (2006) Properties of the energetic particle distributions during the October 28, 2003 solar flare from INTEGRAL/SPI observations. Astron Astrophys 445:725–733

    ADS  Google Scholar 

  • Kiraly P, Wolfendale AW (1999) Long-term particle fluence distributions and short- term observations. In: Proceeding of 26th international cosmic ray conference, vol 6. Salt Lake City, pp 163–166

    Google Scholar 

  • Kirillov AS, Balabin YuV, Vashenyuk EV, Fadel Kh, Miroshnichenko LI (2008) Effect of solar protons on the middle atmosphere composition during the GLE of 13 December 2006. In: Proceeding of 30th international cosmic ray conference, vol 2. Merida, Yucatan, pp 129–132

    Google Scholar 

  • Klecker B (2009) Sun, Corona, and Transient Phenomena in the Heliosphere. In: Caballero R, D’Olivo JC, Medina-Tanco G, Valdés-Galicia JF (eds) Proceedings of the 30th international cosmic ray conference, vol 6. Universidad Nacional Autonóma de México, Mexico City, pp 225–237

    Google Scholar 

  • Klecker B, Cliver E, Kahler S, Cane H (1990b) Particle acceleration in solar flares. EOS Trans AGU 71(39):1102–1103

    ADS  Google Scholar 

  • Klein K-L, Chupp EL, Trottet G, Magun A, Dunphy PP, Rieger E, Urpo S (1999) Flare-associated energetic particles in the corona and at 1 AU. Astron Astrophys 348:271–285

    ADS  Google Scholar 

  • Klein KL, Fuller N, Steigies CT (for the NMDB Team) (2009) The real-time neutron monitor database. http://www.nmdb.eu/

  • Kocharov GE, Kocharov LG, Kovaltsov GA et al (in all 8 authors) (1993) Evidence for extended neutron and gamma-ray generation during two solar flares. In: Proceeding of 23rd international cosmic ray conference, vol 3. Calgary, pp 107–110

    Google Scholar 

  • Kocharov LG, Torsti J, Teittinen M, Laitinen T (1999) Post-impulsive phase acceleration of >10 MeV protons. In: Proceeding of 26th international cosmic ray conference, vol 6. Salt Lake City, pp 236–239

    Google Scholar 

  • Kovaltsov GA, Usoskin IG (2014) Occurrence probability of large solar energetic particle events: assessment from data on cosmogenic radionuclides in lunar rocks. Solar Phys 289:211–220. doi:10.1007/s11207-013-0333-5

    ADS  Google Scholar 

  • Kudela K, Langer R (2008) Ground Level Events recorded at Lomnicky Stit neutron monitor. In: Proceedings of 30th international cosmic ray conference, vol 1. Mérida, México, pp 205–208

    Google Scholar 

  • Kumar P, Quataert EJ, Bahcall JN (1996) Observational searches for solar g-modes: some theoretical considerations. Astrophys J Lett 482(2):L83–L85

    ADS  Google Scholar 

  • Kurt VG, Logachev YuI, Stolpovsky VG, Daibog EI (1981) Energetic solar particle spectra according to Venera-11, 12 and Prognoz-5, 6 observations. In: Proceeding of 17th international cosmic ray conference, vol 3. Paris, pp 69–72

    Google Scholar 

  • Kuzhevskij BM, Kuznetsov SN, Troitskaia EV (1998) Development of the solar flare plasma density investigation method based on the 2.2 MeV gamma-line time profile analysis. Adv Space Res 22:1141–1147

    ADS  Google Scholar 

  • Kuzhevskij BM, Miroshnichenko LI, Troitskaia EV (2005a) Gamma-ray radiation with energy of 2.223 MeV and the density distribution in the solar atmosphere during flares. Astron Rep 49(7):566–577

    ADS  Google Scholar 

  • Kuznetsov SN, Kurt VG, Yushkov BY, Kudela K, Galkin VI (2011) Gamma-ray and high-energy-neutron measurements on CORONAS-F during the solar flare of 28 October 2003. Solar Phys 268:175–193

    ADS  Google Scholar 

  • LaRosa TN, Moore RL (1993) A mechanism for bulk energization in the impulsive phase of solar flare: MHD turbulent cascade. Astrophys J 418:912

    ADS  Google Scholar 

  • Li C, Firoz KA, Sun LP, Miroshnichenko LI (2013) Electron and proton acceleration during the first GLE event of solar cycle 24. Astrophys J 770:34 (11 pp). doi:10.1088/0004-637X/770/1/34

  • Mandzhavidze N, Ramaty R, Bertsch DL, Schneid EJ (1996) Pion decay and nuclear line emissions from the 1991 June 11 flare. In: Ramaty R, Mandzhavidze N, Hua X-M (eds) High energy solar physics, vol 374, AIP conference proceedings. AIP, New York, pp 225–236

    Google Scholar 

  • Matsubara Y, Muraki Y, Sako T, Tajima N, Kakimoto F, Ogio S, Shirasaki Y, Murakami K, Kaneko T, Yoshii H, Martinic N, Miranda P, Ticona R, Velarde A (1997a) Detection efficiency of the Bolivian solar neutron detector. In: Proceeding of 25th international cosmic ray conference, vol 1. Durban, pp 61–64

    Google Scholar 

  • Matsubara Y, Muraki Y, Sakakibara S, Koi T, Sako T, Okada A, Murata T, Imaida I, Tsuchiya H, Shibata S, Munakata Y, Tatsuoka R, Sakai H, Wakasa T, Nonaka T, Ohnishi T, Hatanaka K, Miyashida A, Nakagiri M, Okita K, Mizumoto Y (1997b) A new solar neutron telescope in Hawaii. In: Proceeding of 25th international cosmic ray conference, vol 1. Durban, pp 37–40

    Google Scholar 

  • Mavromichalaki H, Papaioannou A, Plainaki C, Sarlanis C, Souvatzoglou G, Gerontidou M, Papailiou M, Eroshenko E, Belov A, Yanke V, Flückiger EO, Bütikofer R, Parisi M, Storini M, Klein K-L, Fuller N, Steigies CT, Rother OM, Heber B, Wimmer-Schweingruber RF, Kudela K, Strharsky I, Langer R, Usoskin I, Ibragimov A, Chilingaryan A, Hovsepyan G, Reymers A, Yeghikyan A, Kryakunova O, Dryn E, Nikolayevskiy N, Dorman L, Pustil’nik L (2011) Applications and usage of the real-time Neutron Monitor Database. Adv Space Res 47:2210–2222

    ADS  Google Scholar 

  • McCracken KG (1962c) The cosmic-ray flare effect. 3. Deductions regarding the interplenatary magnetic field. J Geophys Res 67(2):447

    ADS  Google Scholar 

  • McCracken KG, Dreschhoff GAM, Zeller EJ, Smart DF, Shea MA (2001) Solar cosmic ray events for the period 1561–1994. 1. Identification in polar ice, 1561–1950. J Geophys Res 106(A10):21585–21598

    ADS  Google Scholar 

  • McCracken KG, Moraal H, Stoker PH (2008) Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J Geophys Res 113:A12101. doi:10.1029/2007JA012829

    ADS  Google Scholar 

  • Miller JA, Cargill PJ, Emslie AG, Holman GD, Dennis BR, LaRosa TN, Winglee RM, Benka SG, Tsuneta S (1997) Critical issues for understanding particle acceleration in impulsive solar flares. J Geophys Res 102(A7):14631–14659

    ADS  Google Scholar 

  • Miroshnichenko LI (1987) Dynamics and energetics of accelerated particles in solar flares. In: Shcherbina-Samoilova IS (ed) Solar flares, vol 34. VINITI, Moscow, pp 238–277

    Google Scholar 

  • Miroshnichenko LI (1990) Dynamics and prediction of radiation characteristics of solar cosmic rays, Doctoral dissertation. IZMIRAN, Moscow, p 326

    Google Scholar 

  • Miroshnichenko LI (1995) On the threshold effect of proton acceleration in solar flares. Solar Phys 156(1):119–129

    ADS  Google Scholar 

  • Miroshnichenko LI (2003a) Radiation hazard in space. Kluwer Academic Publishers, Dordrecht/Boston, p 238

    Google Scholar 

  • Miroshnichenko LI (2003b) Multiple acceleration at the Sun: new approach to separation of the sources. In: Proceedings ISCS 2003 symposium, “Solar variability as an input to the earth’s Environment”, Tatranska Lomnica, Slovakia, 23–28 June 2003, ESA SP-535, Sep 2003, pp 625–630

    Google Scholar 

  • Miroshnichenko LI (2008) Solar cosmic rays in the system of solar-terrestrial relations (review). J Atm Solar-Terr Phys 70:450–466

    ADS  Google Scholar 

  • Miroshnichenko LI, Gan WQ (2012) Particle acceleration and gamma-rays in solar flares: recent observations and new modeling. Adv Space Res 50:736–756. doi:10.1016/j.asr.2012.04.024

    ADS  Google Scholar 

  • Miroshnichenko LI, Nymmik RA (2014) Extreme fluxes in solar energetic particle events: methodological and physical limitations. Radiat Meas 61:6–15

    Google Scholar 

  • Miroshnichenko LI, Perez-Peraza JA (2008) Astrophysical aspects in the studies of solar cosmic rays (invited review). Int J Modern Phys A (IJMPA) 23(1):1–141

    ADS  Google Scholar 

  • Miroshnichenko LI, Mendoza B, Perez-Enriquez R (1999) Energy spectra of accelerated solar protons from different sources: I. Reconstruction and properties of the source spectrum. Solar Phys 186(1-2):381–400

    ADS  Google Scholar 

  • Miroshnichenko LI, de Koning CA, Perez-Enriquez R (2000) Large solar event of September 29, 1989: ten years after. Space Sci Rev 91(3–4):615–715

    ADS  Google Scholar 

  • Miroshnichenko LI, Mendoza B, Perez-Enriquez R (2001) Size distributions of the >10 MeV solar proton evens. Solar Phys 193:151–171

    ADS  Google Scholar 

  • Miroshnichenko LI, Vashenyuk EV, Perez-Peraza JA (2013) Solar cosmic rays: 70 years of ground-based observations. Geomagn Aeron 53(5):541–560

    ADS  Google Scholar 

  • Müller-Mellin R, Röhrs K, Wibberenz G (1986) Super-events in the inner solar system and their relation to the solar cycle. In: Marsden RG, Reidel D (eds) The sun and the heliosphere in three dimensions, Hingham, p 349

    Google Scholar 

  • Muraki Y, Murakami K, Miyazaki M et al (1992) Observation of solar neutrons associated with the large flare on 1991 June 4. Astrophys J Lett 400:L75–L78

    ADS  Google Scholar 

  • Muraki Y, Takahashi T, Matsubara Y, Shibata S, Sakakibara S, Yamada T, Murakami K, Mitsui K, Sakai T (1993) The properties of Norikura Solar Neutron Telescope. In: Proceeding of 23rd international cosmic ray conference, vol 3. Calgary, pp 171–174

    Google Scholar 

  • Muraki Y, Matsubara Y, Sakakibara S, Yamada T, Koi T, Sako T, Nishiyama T, Murata T, Matsuoka T, Kitamura A, Imaida I, Tsuchiya H, Munakata K, Yasue S, Kato C, Sakurai I, Yamaguchi I, Shibata S, Munakata Y, Sakai T, Mitsui K (1997) The 64 m2 Solar Neutron Telescope at Norikura. In: Proceeding of 25th international cosmic ray conference, vol 1. Durban, pp 53–56

    Google Scholar 

  • Murphy RJ, Share GH (2005) What gamma-ray de-excitation lines reveal about solar flares. Adv Space Res 35:1825–1832

    ADS  Google Scholar 

  • Murphy RJ, Share GH, Skibo JG, Kozlovsky B (2005) The physics of positron annihilation in the solar atmosphere. Astrophys J Suppl 161:495–519

    ADS  Google Scholar 

  • Murphy RJ, Kozlovsky B, Share GH et al (in all 5 authors) (2007) Using gamma-ray and neutron emission to determine solar flare accelerated particle spectra and compositions within the flare magnetic loop. Astrophys J Suppl. 168:167–194

    Google Scholar 

  • Nymmik RA (2006) Initial conditions for radiation analysis: models of galactic cosmic rays and solar particle events. Adv Space Res 38:1182–1190

    ADS  Google Scholar 

  • Nymmik RA (2007a) Improved environment radiation models. Adv Space Res 40(3):313–320

    ADS  Google Scholar 

  • Nymmik RA (2007b) To the problems on the regularities of solar energetic particle events occurrence. Adv Space Res 40(3):321–325

    ADS  Google Scholar 

  • Nymmik RA (2011) Some problems with developing a Standard for determining solar energetic particle fluxes. Adv Space Res 47:622–628

    ADS  Google Scholar 

  • Papaioannou A, Souvatzoglou G, Paschalis P, Gerontidou M, Mavromichalaki H (2014) The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection. Solar Phys 289:423–436. doi:10.1007/s11207-013-0336-2

    ADS  Google Scholar 

  • Perez-Enriquez R (1985) On the role of energetic particles in solar flares. Solar Phys 97(1):131–144

    ADS  Google Scholar 

  • Perez-Peraza J, Gallegos-Cruz A, Vashenyuk EV, Miroshnichenko LI (1992) Spectrum of accelerated particles in solar proton events with prompt component. Geomagn Aeron 32(2):1–12

    ADS  Google Scholar 

  • Perez-Peraza JA, Gallegos-Cruz A, Vashenyuk EV, Miroshnichenko LI, Balabin YV (2009) Impulsive, stochastic, and shock wave acceleration of relativistic protons in large solar events of 1989 September 29, 2000 July 14, 2003 October 28, and 2005 January 20. Astrophys J 695(2):865–873

    ADS  Google Scholar 

  • Perez-Peraza J, Velasco-Herrera V, Zapotitla J, Miroshnichenko LI, Vashenyuk EV, Libin IYa (2011) Classification of GLEs as a function of their spectral content for prognostic goals. In: Proceeding of 32nd international cosmic ray conference, vol 10. Beijing, pp 149–152

    Google Scholar 

  • Priest E, Forbes T (2000) Magnetic field reconnection (MHD theory and applications). Cambridge University Press, Cambridge/New York, p 520

    Google Scholar 

  • Pyle KR, Simpson JA (1991) Observation of a direct solar neutron event on 22 March 1991 with the Haleakala, Hawaii, neutron monitor. In: Proceeding of 22nd international cosmic ray conference, vol 3. Dublin, pp 53–56

    Google Scholar 

  • Quack M, Kallenrode MB, von König M, Künzi K, Burrows J, Heber B, Wolff E (2001) Ground level events and consequences for stratospheric chemistry. In: Proceeding of 27th international cosmic ray conference, vol 10. Hamburg, pp 4023–4026

    Google Scholar 

  • Ramaty R, Murphy RJ (1987) Nuclear processes and accelerated particles in solar flares. Space Sci Rev 45:213–268

    ADS  Google Scholar 

  • Reames DV (1996) Energetic particles from solar flares and coronal mass ejections. In: Ramaty R, Mandzhavidze N, Hua X-M (eds) High energy solar physics, vol 374, AIP conference proceedings. AIP, New York, pp 35–44

    Google Scholar 

  • Reames DV (1999) Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90:413–491

    ADS  Google Scholar 

  • Reedy RC (1996) Constraints on solar particle events from comparison of recent events and million-year averages. In: Balasubramanian KS, Keil SL, Smartt RN (eds) Solar drivers of interplanetary and terrestrial disturbances, vol 95, Conference series. Astronomical Society of the Pacific, San Francisco, pp 429–436

    Google Scholar 

  • Ryan JM, Lockwood JA, Debrunner H (2000) Solar energetic particles. Space Sci Rev 93:35–53

    ADS  Google Scholar 

  • Sakai J-I, Ohsawa Y (1987) Particle acceleration by magnetic reconnection and shocks during current loop coalescence in solar flares. Space Sci Rev 46(1/2):113–198

    ADS  Google Scholar 

  • Schrijver CJ, Hudson HS, Murphy RJ et al (in all 5 authors) (2006) Gamma rays and the evolving, compact structures of the 2003 October 28 X17 flare. Astrophys J 650:1184–1192

    Google Scholar 

  • Schrijver CJ, Beer J, Baltensperger U, Cliver E, Gudel M, Hudson H, McCracken KG, Osten R, Peter T, Soderblom D, Usoskin I, Wolff EW (2012) Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J Geophys Res 117, A08103. doi:10.1029/2012JA017706

    ADS  Google Scholar 

  • Share GH, Murphy RJ (1995) Gamma-ray measurements of flare-to-flare variations in ambient solar abundances. Astrophys J 452:933–943

    ADS  Google Scholar 

  • Share GH, Murphy RJ, Skibo JG (1996) Gamma-ray line measurements and ambient solar abundances. In: Ramaty R, Mandzhavidze N, Hua X-M (eds) High energy solar physics, vol 374, AIP conference proceedings. AIP, New York, pp 162–171

    Google Scholar 

  • Share GH, Murphy RJ, Smith DM, Schwartz RA, Lin RP (2004) RHESSI e+- e annihilation radiation observations: Implications for conditions in the flaring solar chromosphere. Astrophys J Lett 615:L169–L172

    ADS  Google Scholar 

  • Shea MA, Smart DF (1990a) A summary of major solar proton events. Solar Phys 127(2):297–320

    ADS  Google Scholar 

  • Shea MA, Smart DF (1990b) Statistical trends (or lack thereof) in solar proton events during the last three solar cycles. In: Thompson RJ, Cole DG, Wilkinson PJ, Shea MA, Smart DF, Heckman GH (eds) Solar-terrestrial predictions: proceedings of a workshop at Leura, Australia, October 16–20, 1989, vol 1 NOAA ERL, Boulder, pp 586–591

    Google Scholar 

  • Shea MA, Smart DF (2012) Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171:161–188. doi:10.1007/s11214-012-9923-z

    ADS  Google Scholar 

  • Shea MA, Smart DF, McCracken KG, Dreschhoff GAM, Spence HE (2006) Solar proton events for 450 years: the Carrington event in perspective. Adv Space Res 38:232–238. doi:10.1016/j.asr.2005.02.100

    ADS  Google Scholar 

  • Shibata S, Murakami K, Muraki Y, Miyazaki M, Takahashi T, Sakai T, Martinic NJ, Capdeville JN (1991) The detection efficiency of a new solar neutron telescope. In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 788–791

    Google Scholar 

  • Simnett GM (1985) The fate of sunward streaming protons associated with coronal mass ejections. Astron Astrophys 145:139–143

    ADS  Google Scholar 

  • Simnett GM (1986) A dominant role for protons at the onset of solar flares. Solar Phys 106(1):165–183

    ADS  Google Scholar 

  • Simnett GM (1991) Energetic particle production in flares. Phil Trans Roy Soc London A336(1643):439–450

    ADS  Google Scholar 

  • Simnett GM (1995) Protons in flares. Space Sci Rev 73:387–432

    ADS  Google Scholar 

  • Simnett GM, Haines MG (1990) On the production of hard X-rays in solar flares. Solar Phys 130(1/2):253–263

    ADS  Google Scholar 

  • Smart DF, Shea MA (1990a) The concept of using the Deep River and Kerguelen neutron monitors as “flagship” stations for ground-level solar cosmic ray events. In: Proceedings of 21st international cosmic ray conference, vol 5. Adelaide, pp 144–147

    Google Scholar 

  • Smart DF, Shea MA (1993) Predicting and modeling solar flare generated proton fluxes in the inner heliosphere. In: Swenberg CE et al (eds) Biological effects and physics of solar and galactic cosmic radiation, Part B. Plenum Press, New York, pp 101–117

    Google Scholar 

  • Somov BV (1992) Physical processes in solar flares. Kluwer Academic Publ, Dordrecht/Boston/London, 248 pp

    Google Scholar 

  • Somov BV (1996) Reconnection and acceleration to high energies in flares. In: Ramaty R, Mandzhavidze N, Hua X-M (eds) High energy solar physics, vol 374, AIP conference proceedings. AIP, New York, pp 493–497

    Google Scholar 

  • Somov BV (2012) Plasma astrophysics: 1. Fundamentals and practice. 2. Reconnection and flares. Springer, New York

    Google Scholar 

  • Somov BV, Oreshina AV (2011) Magnetic reconnection and acceleration of particles on the sun. Bull Russian Acad Sci Phys 75(6):735–737

    MathSciNet  ADS  Google Scholar 

  • Spruit HC (1974) A model of the solar convection zone. Solar Phys 34:277–290

    ADS  Google Scholar 

  • Struminsky A, Zimovets I (2009) On estimates of first solar proton arrival. In: Kiraly P, Kudela K, Stehlik M, Wolfendale AW (eds) Proceedings of 21st ECRS. VIENALA s.r.o., Kosice. pp 237–241

    Google Scholar 

  • Struminsky A, Matsuoka M, Takahashi K (1994) Evidence of additional production of high energy neutrons during the solar flare on 1991 June 4. Astrophys J 429:400–405

    ADS  Google Scholar 

  • Thomas BC, Arkenberg KR, Brock R, Snyder BR II, Melott AL (2013) Terrestrial effects of possible astrophysical sources of an AD 774–775 increase in carbon-14 production. Geophys Res Lett 40:1237–1240. doi:10.1002/grl.50222 (accepted)

    ADS  Google Scholar 

  • Thompson DJ, Maclennan CG, Lanzerotti LJ (1995) Propagation of solar oscillations through the interplanetary medium. Nature 376:139–144

    ADS  Google Scholar 

  • Thompson DJ, Lanzerotti LJ, Maclennan CG (1998) Periodicities in interplanetary particles and fields, and relationships to solar modes. Eos Trans AGU Spring Meet Suppl 79(17):S285 (abstract)

    Google Scholar 

  • Timashkov DA, Balabin YV, Borog VV, Kompaniets KG, Petrukhin AA, Room DA, Vashenyuk EV, Shutenko VV, Yashin II (2008) Ground-Level Enhancement of December 13, 2006 in muon hodoscopes data. In: Caballero R, D’Olivo JC, Medina-Tanco G, Nellen L, Sánchez FA, Valdés-Galicia JF (eds) Proceedings of 30th international cosmic ray conference, vol 1. Universidad Nacional Autónoma de México, Mexico City, pp 209–212

    Google Scholar 

  • Troitskaia EV, Gan WQ, Kuzhevskij BM, Miroshnichenko LI (2007) Solar plasma density and spectrum of accelerated particles derived from the 2.223 MeV line of a solar flare. Solar Phys 242:87–99

    ADS  Google Scholar 

  • Troitskaia EV, Arkhangelskaja IV, Miroshnichenko LI, Arkhangelsky AI (2009) Study of the 28 October 2003 and 20 January 2005 solar flares by means of 2.223 MeV gamma- emission line. Adv Space Res 43(4):547–552

    ADS  Google Scholar 

  • Troitskaia EV, Arkhangelskaja IV, Gan WQ (2011) Study of 20 January 2005 solar flare area by certain gamma-ray lines. In: Proceedings of 32nd international cosmic ray conference. Beijing, SH1.1, ID0702 (CD-ROM)

    Google Scholar 

  • Tylka A, Dietrich W (2009) A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proceedings 31th international cosmic ray conference. Lod/z

    Google Scholar 

  • Tylka AJ, Cohen CMS, Dietrich WF, Lee MA, Maclennan CG, Mewaldt RA, Ng CK, Reames DV (2005) Shock geometry, seed population, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys J 625:474–495

    ADS  Google Scholar 

  • Usoskin IG, Kovaltsov GA (2012) Occurrence of extreme solar particle events: assessment from historical proxy data. Astrophys J 757:92 [DOI], [ADS], [arXiv:1207.5932]

    ADS  Google Scholar 

  • Usoskin IG, Solanki SK, Kovaltsov GA, Beer J, Kromer B (2006) Solar proton events in cosmogenic isotope data. Geophys Res Lett 33, L08107. doi:10.1029/2006GL026059

    ADS  Google Scholar 

  • Vainio R, Desorgher L, Heynderickx D et al (in all 12 authors) (2009) Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147:187–231. doi:10.1007/s11214-009-9496-7

  • Vernazza JE, Avrett EH, Loeser R (1981) Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet Sun. Astrophys J Suppl 45:635–725

    ADS  Google Scholar 

  • Vestrand WT, Forrest DJ (1993) Evidence of a spatially extended component of gamma rays from solar flares. Astrophys J Lett 409:L69–L72

    ADS  Google Scholar 

  • Wdowczyk J, Wolfendale AW (1977) Cosmic rays and ancient catastrophes. Nature 268(5620):510–512

    ADS  Google Scholar 

  • Webber WR, Higbie PR, McCracken KG (2007) Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth’s atmosphere by solar and galactic cosmic rays. J Geophys Res 112, A10106

    ADS  Google Scholar 

  • Wolff EW, Bigler M, Curran MAJ, Dibb JE, Frey MM, Legrand M, McConnell JR (2012) The Carrington event not observed in most ice core nitrate records. Geophys Res Lett 39:L08503. [DOI], [ADS]

    ADS  Google Scholar 

  • Zharkova VV (2012) Electron and proton kinetics and dynamics in flaring atmosphere. Wiley- VCH, Weinheim

    Google Scholar 

  • Zharkova VV, Arzner K, Benz AO, Browning P, Dauphin C, Emslie AG, Fletcher L, Kontar EP, Mann G, Onofri M, Petrosian V, Turkmani R, Vilmer N, Vlahos L (2011) Recent advances in understanding particle acceleration processes in solar flares. Space Sci Review 159:357–420. doi:10.1007/s11214-011-9803-y

    ADS  Google Scholar 

  • Aschwanden MJ, Benz AO (1994) Periodic or random acceleration in solar flares? Space Sci Rev 68:193–198

    ADS  Google Scholar 

  • de Jager C (1990) An explanation of the ‘granulation boundary’ in the HR diagram. Solar Phys 126:201–205

    ADS  Google Scholar 

  • Gan WQ, Chang J, Li YP, Su Y, Miroshnichenko LI (2004) On the positronium continuum and 0.511 MeV line in solar flares. Chin J Astron Astrophys 4(4):357–364

    ADS  Google Scholar 

  • Hua X-M, Lingenfelter RE (1987b) Solar flare neutron production and the angular dependence of the capture gamma-ray emission. Solar Phys 107:351–383

    ADS  Google Scholar 

  • Hudson HS, Cliver EW (2001) Observing coronal mass ejections without coronagraphs. J Geophys Res 106(A11):25,199–25,213 (2000JA004026)

    ADS  Google Scholar 

  • Kocharov LG, Kovaltsov GA, Kocharov GE, Chuikin EI, Usoskin IG, Shea MA, Smart DF, Melnikov VF, Podstrigach TS, Annstrong TP, Zhin H (1994) Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: continuous acceleration of relativistic particles. Solar Phys 150:267–283

    ADS  Google Scholar 

  • Kocharov L, Kovaltsov GA, Torsti J, Ostryakov VM (2000) Evaluation of solar energetic Fe charge states: effect of proton-impact ionization. Astron Astrophys 357:716–724

    ADS  Google Scholar 

  • Pérez-Enríquez R, Guerrero M, Miroshnichenko LI, Rodríguez-Taboada RE, Méndez-Berhondo A, Zlobec P (2000) Multiple particle acceleration at the Sun during large extension and long duration gamma ray events. In: Ramaty R, Mandzhavidze N (eds) High energy solar physics – anticipating HESSI, ASP conference Series, vol 206. pp 445–450

    Google Scholar 

  • Ramaty R, Lingenfelter RE, Kozlovsky B, Reeves H (1997) Light elements and cosmic rays in the early Galaxy. Astrophys J 488:730–748

    ADS  Google Scholar 

  • Roth I, Temerin M (1997) Enrichment of 3He and heavy ions in impulsive solar flares. Astrophys J 477:940–957

    ADS  Google Scholar 

  • Schatzman E (1966) Elementary processes and acceleration mechanisms. In: High energy astrophysics, summer school of the HOUCHES, vol 2. Gordon and Breach, pp 229

    Google Scholar 

  • Smart DF, Shea MA (1997) The >10 MeV peak flux distribution. In: Heckman G et al (eds) Solar-terrestrial predictions-V. RWC Tokyo, Hiraiso Solar Terrestrial Research Center, Communications Research Laboratory, Hitachinaka, pp 449–452

    Google Scholar 

  • Usoskin IG, Kovaltsov GA, Mironova IA, Tylka AJ, Dietrich WF (2011) Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos Chem Phys 11:1979–1988. doi:10.5194/acp-11-1979-2011. www.atmos-chem-phys.net/11/1979/2011/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miroshnichenko, L. (2015). Summary and Conclusion: Problems and Prospects. In: Solar Cosmic Rays. Astrophysics and Space Science Library, vol 405. Springer, Cham. https://doi.org/10.1007/978-3-319-09429-8_12

Download citation

Publish with us

Policies and ethics