Skip to main content

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1192 Accesses

Abstract

The aim of tissue engineering is to develop cell, construct, and living system technologies to restore the structures and functions of damaged or degenerated tissues. Scaffolds are supporting materials used in tissue engineering applications to repair or restore damaged tissues. Biomaterials are used to fabricate scaffolds. There are different types of biomaterials including biopolymers, bioceramics and biodegradable metals. Biomaterials have to be biocompatible and non-toxic. To fabricate scaffold, appropriate biomaterial has to be chosen according to the desired characteristics and application of the scaffold. This chapter reviews different types of biomaterials for different tissue engineering applications.

Mim Mim Lim and Naznin Sultana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anitha, A., Sowmya, S., Kumar, P. T., Deepthi, S., Chennazhi, K. P., Ehrlich, H., et al. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39, 1644–1667.

    Google Scholar 

  • Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., et al. (2009). Natural-synthetic polyblend nanofibers for biomedical applications. Advanced Materials, 21, 2792–2797.

    Article  Google Scholar 

  • Burkoth, A. K., Burdick, J., & Anseth, K. S. (2000). Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. Journal of Biomedical Materials Research, 51, 352–359.

    Article  Google Scholar 

  • Cooper, A., Bhattarai, N., & Zhang, M. (2011). Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 85, 149–156.

    Article  Google Scholar 

  • Finch, C. A., & Jobling, A. (1977). The physical properties of gelatin. In The science and technology of gelatin. London: Academic Press.

    Google Scholar 

  • Frazza, E., & Schmitt, E. (1971). A new absorbable suture. Journal of Biomedical Materials Research, 5, 43–58.

    Article  Google Scholar 

  • Hanes, J., Chiba, M., & Langer, R. (1998). Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials, 19, 163–172.

    Article  Google Scholar 

  • Hermawan, H. (2012). Biodegradable metals: From concept to applications. New York: Springer.

    Google Scholar 

  • Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydrate Polymers, 83, 940–946.

    Article  Google Scholar 

  • Ibim, S. M., Uhrich, K. E., Bronson, R., El-Amin, S. F., Langer, R. S., & Laurencin, C. T. (1998). Poly(anhydride-co-imides): In vivo biocompatibility in a rat model. Biomaterials, 19, 941–951.

    Article  Google Scholar 

  • Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C., & Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 46, 5094–5102.

    Article  Google Scholar 

  • Lanza, R., Langer, R., & Vacanti, J. (2007). Principles of tissue engineering. London: Academic Press.

    Google Scholar 

  • Liu, C., Xia, Z., & Czernuszka, J. (2007). Design and development of three-dimensional scaffolds for tissue engineering. Chemical Engineering Research and Design, 85, 1051–1064.

    Article  Google Scholar 

  • Lowry, K., Hamson, K., Bear, L., Peng, Y., Calaluce, R., Evans, M., et al. (1997). Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research, 36, 536–541.

    Article  Google Scholar 

  • Moghe, A., Hufenus, R., Hudson, S., & Gupta, B. (2009). Effect of the addition of a fugitive salt on electrospinnability of poly(ε-caprolactone). Polymer, 50, 3311–3318.

    Article  Google Scholar 

  • Mueller, P. P., May, T., Perz, A., Hauser, H., & Peuster, M. (2006). Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 27, 2193–2200.

    Article  Google Scholar 

  • Muggli, D. S., Burkoth, A. K., & Anseth, K. S. (1999). Crosslinked polyanhydrides for use in orthopedic applications: Degradation behavior and mechanics. Journal of Biomedical Materials Research, 46, 271–278.

    Article  Google Scholar 

  • Muzzarelli, R. A. (2011). Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs, 9, 1510–1533.

    Article  Google Scholar 

  • Patel, N. R., & Gohil, P. P. (2012). A Review on biomaterials: Scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2, 91–101.

    Google Scholar 

  • Peuster, M., Wohlsein, P., Brügmann, M., Ehlerding, M., Seidler, K., Fink, C., et al. (2001). A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—Results 6–18 months after implantation into New Zealand white rabbits. Heart, 86, 563–569.

    Article  Google Scholar 

  • Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., et al. (2008). Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering Part A, 14, 1787–1797.

    Article  Google Scholar 

  • Reed, A., & Gilding, D. (1981). Biodegradable polymers for use in surgery—poly (glycolic)/poly (Iactic acid) homo and copolymers: 2. In vitro degradation. Polymer, 22, 494–498.

    Article  Google Scholar 

  • Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413–3431.

    Article  Google Scholar 

  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632.

    Article  Google Scholar 

  • Stephen-Haynes, J., Gibson, E., & Greenwood, M. (2014). Chitosan: A natural solution for wound healing. Journal of Community Nursing, 28, 48–53.

    Google Scholar 

  • Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: Surface modification and in vitro biological evaluation. Biofabrication, 4, 015003.

    Article  Google Scholar 

  • Swieszkowski, W., Jaegermann, Z., Hutmacher, D. W., & Kurzydlowski, K. J. (2010). Ceramic materials for bone tissue replacement and regeneration. In D. Jiang, Y. Zeng, M. Singh, & J. Heinrich (Eds.), Ceramic materials and components for energy and environmental applications (pp. 525–530). Hoboken, NJ, USA: John Wiley & Sons, Inc. doi: 10.1002/9780470640845.ch74.

  • Tiyaboonchai, W. (2013). Chitosan nanoparticles: A promising system for drug delivery. Naresuan University Journal, 11, 51–66.

    Google Scholar 

  • Vail, N., Swain, L., Fox, W., Aufdlemorte, T., Lee, G., & Barlow, J. (1999). Materials for biomedical applications. Materials and Design, 20, 123–132.

    Article  Google Scholar 

  • Van der Schueren, L., de Schoenmaker, B., Kalaoglu, Ö. I., & de Clerck, K. (2011). An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 47, 1256–1263.

    Article  Google Scholar 

  • Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., & Tio, F. O. (2008). Short-term effects of biocorrodible iron stents in porcine coronary arteries. Journal of Interventional Cardiology, 21, 15–20.

    Article  Google Scholar 

  • Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59, 325–338.

    Article  Google Scholar 

  • Witte, F., & Eliezer, A. (2012). Biodegradable metals. In Degradation of implant materials. New York: Springer.

    Google Scholar 

  • Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256.

    Article  Google Scholar 

  • Yang, X., Chen, X., & Wang, H. (2009). Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules, 10, 2772–2778.

    Article  Google Scholar 

  • Zhang, Y., Ouyang, H., Lim, C. T., Ramakrishna, S., & Huang, Z. M. (2005). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72, 156–165.

    Article  Google Scholar 

  • Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naznin Sultana .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Sultana, N., Hassan, M.I., Lim, M.M. (2015). Scaffolding Biomaterials. In: Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-09755-8_1

Download citation

Publish with us

Policies and ethics