Skip to main content

Surface Chemistry of Diamond

  • Chapter
  • First Online:
Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

The diamond material possesses very attractive properties, such as superior electronic properties (when doped), in addition to a controllable surface termination. During the process of diamond synthesis, the resulting chemical properties will mainly depend on the adsorbed species. These species will have the ability to influence both the chemical and electronic properties of diamond. All resulting (and interesting) properties of a terminated diamond surface, make it clear that surface termination is very important for especially those applications in which diamond can function as an electrode material. Theoretical modeling has during the last decades been proven to become highly valuable in the explanation and prediction of experimental results. Simulation of the dependence of various factors influencing the surface reactivity, will aid important information about surface processes including surface stability, modification and functionalization. Other examples include thin film growth mechanisms and surface electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Amaral, A.G. Dias, P.S. Gomes, M.A. Lopes, R.F. Silva, J.D. Santos, M.H. Fernandes, Nanocrystalline diamond: in vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. J. Biomed. Mater. Res. A 87(1), 91–99 (2008). doi:10.1002/jbm.a.31742

  2. J.P. McEvoy, G.W. Brudvig, Water-splitting chemistry of photosystem II. Chem. Rev. 106(11), 4455–4483 (2006). doi:10.1021/cr0204294

    Article  Google Scholar 

  3. M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51(2), 191–199 (2005). doi:10.1016/j.electacta.2005.04.023

    Article  Google Scholar 

  4. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990). doi:10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  5. J.P. Perdew, K. Burke, Ernzerhof M generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  6. D. Petrini, K. Larsson, Origin of the reactivity on the nonterminated (100), (110), and (111) diamond surfaces: an electronic structure DFT study. J. Phys. Chem. C 112(37), 14367–14376 (2008). doi:10.1021/jp711190r

    Article  Google Scholar 

  7. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  8. R.G. Parr, W.T. Yang, Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106(14), 4049–4050 (1984). doi:10.1021/ja00326a036

    Article  Google Scholar 

  9. W. Yang, R.G. Parr, R. Pucci, Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J. Chem. Phys. 81(6), 2862–2863 (1984). doi:10.1063/1.447964

    Article  Google Scholar 

  10. K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 20(4), 722–725 (1952). doi:10.1063/1.1700523

    Article  Google Scholar 

  11. K. Fukui, Role of frontier orbitals in chemical reactions. Science 218(4574), 747–754 (1982). doi:10.1126/science.218.4574.747

    Article  Google Scholar 

  12. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990). doi:10.1063/1.458452

    Article  Google Scholar 

  13. D. Petrini, K. Larsson, Theoretical study of the thermodynamic and kinetic aspects of terminated (111). J. Phys. Chem. C 112(8), 3018–3026 (2008). doi:10.1021/jp709625a

    Article  Google Scholar 

  14. Y. Song, N. Yang, C.E. Nebel, K. Larsson, Formation conditions for epitaxial graphene on diamond (111) surfaces. (Submitted)

    Google Scholar 

  15. P.W. May, J.C. Stone, M.N.R. Ashfold, K.R. Hallam, W.N. Wang, N.A. Fox, The effect of diamond surface termination species upon field emission properties. Dia. Rel. Mater. 7(2–5), 671–676 (1998). doi:10.1016/S0925-9635(97)00181-7

    Article  Google Scholar 

  16. B.L. Mackey, J.N. Russell, J.E. Crowell, J.E. Butler, Effect of surface termination on the electrical conductivity and broad-band internal infrared reflectance of a diamond (110) surface. Phys. Rev. B 52(24), R17009–R17012 (1995). doi:10.1103/PhysRevB.52.R17009

    Article  Google Scholar 

  17. H.B. Martin, A. Argoitia, U. Landau, A.B. Anderson, J.C. Angus, Hydrogen and oxygen evolution on boron-doped diamond electrodes. J. Electrochem. Soc. 143(6), L133–L136 (1996). doi:10.1149/1.1836901

    Article  Google Scholar 

  18. C.E. Nebel, F. Ertl, C. Saurer, M. Stutzmann, C.F.O. Graeff, P. Bergonzo, O.A. Williams, R.B. Jackman, Low temperature properties of the p-type surface conductivity of diamond. Dia. Rel. Mater. 11(3–6), 351–354 (2002). doi:10.1016/S0925-9635(01)00586

    Article  Google Scholar 

  19. F. Maier, J. Ristein, L. Ley, Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B. 64(16), 165411 (2001). doi:10.1103/PhysRevB.64.165411

  20. F. De Theije, O. Roy, N.J. van der Laag, W.J.P. van Enckevort, Oxidative etching of diamond. Dia. Rel. Mater. 9(3–6), 929–934 (2000). doi:10.1016/S0925-9635(99)00239-3

    Article  Google Scholar 

  21. H. Touhara, F. Okino, Property control of carbon materials by fluorination. Carbon 38(2), 241–267 (2000). doi:10.1016/S0008-6223(99)00140-2

    Article  Google Scholar 

  22. T. Yamada, T.J. Chuang, H. Seki, Y. Mitsuda, Chemisorption of fluorine, hydrogen and hydrocarbon species on the diamond C(111) surface. Mol. Phys. 76(4), 887–908 (1992). doi:10.1080/00268979200101741

    Article  Google Scholar 

  23. L. Kian Ping, X.N. Xie, S.W. Yang, J.C. Zheng, Oxygen adsorption on (111)-oriented diamond: a study with ultraviolet photoelectron spectroscopy, temperature-programmed desorption, and periodic density functional theory. J. Phys. Chem. B 106(20), 5230–5240 (2002). doi:10.1021/jp0139437

    Article  Google Scholar 

  24. G. Kern, J. Hafner, J. Furthmueller, G. Kresse, (2x1) reconstruction and hydrogen-induced de-reconstruction of the diamond (100) and (111) surfaces. Surf. Sci. 352–354, 745–749 (1996). doi:10.1016/0039-6028(95)01244-3

    Article  Google Scholar 

  25. S.H. Yang, D.A. Drabold, J.B. Adams, Ab initio study of diamond C(100) surfaces. Phys. Rev. B 48(8), 5261–5264 (1993). doi:10.1103/PhysRevB.48.5261

    Article  Google Scholar 

  26. Y.L. Yang, M.P. D’Evelyn, in 38th National Symposium of the American Vacuum Society, 11–15 Nov 1991, AVS, Seattle, Washington (USA)

    Google Scholar 

  27. X.M. Zheng, P.V. Smith, The topologies of the clean and hydrogen-terminated C(100) surfaces. Surf. Sci. 256(1–2), 1–8 (1991). doi:10.1016/0039-6028(91)91194-3

    Article  Google Scholar 

  28. G.D. Kubiak, A.V. Hamza, R.H. Stulen, E.G. Sowa, K.W. Kolasinski, Hydrogen desorption and subsequent reconstruction on natural diamond surfaces. Carbon 28(6), 751–752 (1990). doi:10.1016/0008-6223(90)90268-4

    Article  Google Scholar 

  29. A.V. Hamza, G.D. Kubiak, R.H. Stulen, Hydrogen chemisorption and the structure of the diamond C(100)-(2x1) surface. Surf. Sci. 237(1–3), 35–52 (1990). doi:10.1016/0039-6028(90)90517-C

    Article  Google Scholar 

  30. B.D. Thoms, J.E. Butler, HREELS and LEED of H/C(100): the 2x1 monohydride dimer row reconstruction. Surf. Sci. 328(3), 291–301 (1995). doi:10.1016/00396028(95)00039-9

    Article  Google Scholar 

  31. J.E. Butler, R.L. Woodin, L.M. Brown, P. Fallon, Thin film diamond growth mechanisms. Phil. Trans. R. Soc. A 342(1664), 209–224 (1993). doi:10.1098/rsta.1993.0015

    Article  Google Scholar 

  32. P.E. Pehrsson, T.W. Mercer, Oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 460(1–3), 49–66 (2000). doi:10.1016/S0039-6028(00)00494-5

    Article  Google Scholar 

  33. M. Frenklach, D. Huang, R.E. Thomas, R.A. Rudder, R.J. Markunas, Activation energy and mechanism of CO desorption from (100) diamond surface. Appl. Phys. Lett. 63(22), 3090 (1993). doi:10.1063/1.110217

    Article  Google Scholar 

  34. P. Badziag, W.S. Verwoerd, MNDO analysis of the oxidised diamond (100) surface. Surf. Sci. 183(3), 469–483 (1987). doi:10.1016/S0039-6028(87)80222-4

    Article  Google Scholar 

  35. J. Nakamura, T. Ito, Oxidization Process of CVD Diamond (1 0 0): H2x1 Surfaces (Hammatsu, Japan; Elsevier, Amsterdam, 2005)

    Google Scholar 

  36. X.M. Zheng, P.V. Smith, The stable configurations for oxygen chemisorption on the diamond (100) and (111) surfaces. Surf. Sci. 262(1–2), 219–234 (1992). doi:10.1016/0039-6028(92)90473-J

    Article  Google Scholar 

  37. S. Skokov, B. Weiner, M. Frenklach, Theoretical study of oxygenated diamond (100) surfaces in the presence of hydrogen. Phys. Rev. B (Cond. Matter.) 55(3), 1895–1902 (1997). doi:10.1103/PhysRevB.55.1895

  38. Non-published results

    Google Scholar 

  39. G.Z. Cao, J.J. Schermer, W.J.P. van Enckewort, W.A. Elst, L.J. Giling, Growth of 100 textured diamond films by the addition of nitrogen. J. Appl. Phys. 79(3), 1357–1364 (1996). doi:10.1063/1.361033

    Article  Google Scholar 

  40. W. Muller-Sebert, E. Wörner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl. Phys. Lett. 68(6), 759–760 (1996). doi:10.1063/1.116733

    Article  Google Scholar 

  41. C.S. Yan, Y.K. Vohra, Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond. Dia. Rel. Mater. 8(11), 2022–2031 (1999). doi:10.1016/S0925-9635(99)99148-X

    Article  Google Scholar 

  42. T. Liu, D. Raabe, Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films. Appl. Phys. Lett. 94(2), 21119 (2009). doi:10.1063/1.3072601

    Article  Google Scholar 

  43. S. Dunst, H. Sternschulte, M. Schreck, Growth rate enhancement by nitrogen in diamond chemical vapor deposition—a catalytic effect. Appl. Phys. Lett. 94(22), 224101 (2009). doi:10.1063/1.3143631

    Article  Google Scholar 

  44. Y. Bar-Yam, T.D. Moustakas, Defect-induced stabilization of diamond films. Nature 342, 786 (1989). doi:10.1038/342786a0

    Article  Google Scholar 

  45. T. Frauenheim, G. Jungnickel, P. Sitch, M. Kaukonen, F. Weich, J. Widany, D. Porezag, A molecular dynamics study of N-incorporation into carbon systems: doping, diamond growth and nitride formation. Diam. Relat. Mater. 7(2–5), 348–355 (1998). doi:10.1016/S0925-9635(97)00186-6

    Article  Google Scholar 

  46. G.B. Bachelet, D.R. Hamann, M. Scluter, Pseudopotentials that works: from H to Pu. Phys. Rev. B 26(8), 4199–4228 (1982). doi:10.1103/PhysRevB.26.4199

    Article  Google Scholar 

  47. R. Kalish, The search for donors in diamond. Diam. Relat. Mater. 10(9–10), 1749–1755 (2001). doi:10.1016/S0925-9635(01)00426-5

    Article  Google Scholar 

  48. S.A. Kajihara, A. Antonelli, J. Bernholz, R. Car, Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66(15), 2010–2013 (1991). doi:10.1103/PhysRevLett.66.2010

    Article  Google Scholar 

  49. A. Tallaire, J. Achard, F. Silva, O. Brinza, A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges. C.R. Phys. 14(2–3), 169–184 (2013). doi:10.1016/j.crhy.2012.10.008

  50. Z. Yiming, F. Larsson, K. Larsson, Effect of CVD diamond growth by doping with nitrogen. Theor.Chem. Acc. 133(2), 1432 (2014). doi:10.1007/s00214-013-1432-y

  51. C.J. Chu, B.J. Bai, N.J. Komplin, D.E. Patterson, M.P. D’evelyn, R.H. Hauge, J.L. Margrave, Homoepitaxial growth rate studies on diamond (110), (111), and (100) surfaces in a hot-filament reactor. Novel Forms Carbon 270, 341–346 (1992). doi:10.1557/PROC-270-341

  52. K. Larsson, J.-O. Carlsson, Surface migration during diamond growth studied by molecular orbital calculations. Phys. Rev. B 59(12), 8315–8322 (1999). doi:10.1103/PhysRevB.59.8315

    Article  Google Scholar 

  53. H. Martin, P. Morrison, Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry. J. Electrochem. Solid-State Lett. 4(4), E17–E20 (2001). doi:10.1149/1.13531621

    Article  Google Scholar 

  54. M. Landstrass, K. Ravi, Resistivity of chemical vapor deposited diamond films. Appl. Phys. Lett. 55(10), 975–977 (1989). doi:10.1063/1.101694

    Article  Google Scholar 

  55. H. Kawarada, A. Ruslinda, Diamond electrolyte solution gate FETs for DNA and protein sensors using DNA/RNA aptamers. Phys. Stat. Sol. A 208(9), 2005–2016 (2011). doi:10.1002/pssa.201100503

    Article  Google Scholar 

  56. H. Kawarada, M. Aoki, K. Sasaki, K. Tsugawa, Characterization of hydrogen-terminated CVD diamond surfaces and their contact properties. Diam. Relat. Mater. 3(4–6), 961–965 (1994). doi:10.1016/0965-9635(94)90309-3

    Article  Google Scholar 

  57. K. Hayashi, S. Yamanaka, H. Okushi, K. Kajimura, Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements. Appl. Phys. Lett. 68(3), 376783 (1996). doi:10.1063/1.116690

    Article  Google Scholar 

  58. D. Takeuchi, M. Riedel, J. Ristein, L. Ley, Surface band bending and surface conductivity of hydrogenated diamond. Phys. Rev. B 68(4), 41304(R) (2003). doi:10.1103/PhysRevB.68.041304

  59. J. Ristein, M. Riedel, L. Ley, D. Takeuchi, H. Okushi, Band diagrams of intrinsic and p-type diamond with hydrogenated surfaces. Phys. Stat. Sol. A 199(1), 64–70 (2003). doi:10.1002/pssa.200303814

    Article  Google Scholar 

  60. F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Origin of surface conductivity in diamond. Phys. Rev. Lett. 85(16), 3472–3475 (2000). doi:10.1103/PhysRevLett.85.3472

    Article  Google Scholar 

  61. S. Ri, T. Kazuhiro, T. Seiichi, F. Takao, K. Hideki, K. Tateki, I. Masamori, Hall effect measurements of surface conductive layer on undoped diamond films in NO2 and NH3 atmospheres. Jpn. J. Appl. Phys. 38(6A), 3492–3496 (1999). doi:10.1143/JJAP.38.3492

    Article  Google Scholar 

  62. J. Foord, C.H. Lau, M. Hiramatsu, R. Jackman, C. Nebel, P. Bergonzo, Influence of the environment on the surface conductivity of chemical vapor deposition diamond. Diam. Relat. Mater. 118(3–6), 856–860 (2002). doi:10.1016/S0925-9635(01)00689-6

    Article  Google Scholar 

  63. E. Vittone, E. Ravizza, F. Fizotti, C. Paolini, C. Manfredotti, Presented at the VIIIth International Workshop on Surface and Bulk Defects, Diepenbeek, (Feb 2003)

    Google Scholar 

  64. K. Larsson, J. Ristein, Diamond surface conductivity under atmospheric conditions: theoretical approach. J. Phys. Chem. B 109(20), 10304–10311 (2005). doi:10.1021/jp050419h

    Article  Google Scholar 

  65. D. Petrini, K. Larsson, Electron transfer from a diamond (100) surface to an atmospheric water adlayer: a quantum mechanical study. J. Phys. Chem. C 111(37), 13804–13812 (2007). doi:10.1021/jp070565i

    Article  Google Scholar 

  66. M.M. Hassan, K. Larsson, J. Phys. Chem (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larsson, K. (2015). Surface Chemistry of Diamond. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-09834-0_3

Download citation

Publish with us

Policies and ethics