Skip to main content

The Roles of Plant Peroxidases in the Metabolism of Reactive Nitrogen Species and Other Nitrogenous Compounds

  • Chapter
  • First Online:
Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 23))

Abstract

Peroxidases can metabolize nitrogenous compounds with various degrees of oxidation, such as nitrates, nitrites, and reactive nitrogen species (RNS). The roles of peroxidases in the metabolism of nitrogenous compounds in plants are poorly understood. Due to the continuous transformations of one RNS and reactive oxygen species (ROS) into other species, and also versatile nature of peroxidases, the mechanisms of the interplay between these oxidoreductases and nitrogenous compounds are complex and diverse. In this review, we critically assess the current knowledge on the unique roles of plant and fungal peroxidases in the metabolism of nitrogenous compounds. The interactions of nitrogenous compounds with peroxidases are implicated in signaling by producing or binding RNS and thus effecting the activities of components of signal transduction pathways. The interactions of RNS with peroxidases also provide a key mechanism of posttranslational protein modifications as a consequence of the peroxidase-catalyzed nitration of tyrosine and tryptophan derivatives in proteins in the presence of nitrite and hydrogen peroxide. Activities of a large number of proteins and enzymes depend on tyrosine residues. The interactions of RNS and other nitrogenous compounds with peroxidases may lead to the formation of nitrophenols, which exhibit regulatory effects. Peroxidases may metabolize synthetic nitrophenol derivatives and thus provide an essential mechanism for removal of toxic compounds including xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9(18):4368–4380

    CAS  PubMed  Google Scholar 

  • Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata - ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275(11):2862–2872

    CAS  PubMed  Google Scholar 

  • Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238

    CAS  PubMed  Google Scholar 

  • Almagro L, Ros LVG, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60(2):377–390

    CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kosmala A (2011) Are nitric oxide donors a valuable tool to study the functional role of nitric oxide in plant metabolism? Plant Biol 13(5):747–756

    CAS  PubMed  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59

    CAS  PubMed  Google Scholar 

  • Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S et al (2012) Protein S-nitrosylation: what’s going on in plants? Free Radic Biol Med 53(5):1101–1110

    CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Perez C, Lopez-Jaramillo J et al (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65(2):527–538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bell AA (1981) Biochemical mechanisms of disease resistance. Annu Rev Plant Physiol 32:21–81

    CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16(2):332–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blume YB, Krasylenko YA, Demchuk OM, Yemets AI (2013) Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front Plant Sci 4:530

    PubMed Central  PubMed  Google Scholar 

  • Casella L, Monzani E, Roncone R, Nicolis S, Sala A, De Riso A (2002) Formation of reactive nitrogen species at biologic heme centers: a potential mechanism of nitric oxide-dependent toxicity. Environ Health Perspect 110:709–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H et al (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275(28):21409–21415

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Lopez-Jaramillo J, Luque F et al (2009) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60(15):4221–4234

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Lopez-Jaramillo J et al (2011a) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ 34(11):1803–1818

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Pedrajas JR et al (2011b) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62(6):1803–1813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13(12):1380–1384

    CAS  PubMed  Google Scholar 

  • Colpa DI, Fraaije MW, van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41(1):1–7

    CAS  PubMed  Google Scholar 

  • Cooper CE (1999) Nitric oxide and iron proteins. Biochim Biophys Acta 1411(2–3):290–309

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49(11):1711–1722

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151(4):2083–2094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15(4):1129–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dordas C (2009) Non-symbiotic hemoglobins and stress tolerance in plants. Plant Sci 176(4):433–440

    CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac'h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35(6):763–770

    CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2(5):369–374

    CAS  PubMed  Google Scholar 

  • Ferrer MA, Ros BA (1999) Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant Cell Environ 22(7):891–897

    CAS  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcustauri is light irradiance and growth phase dependent. Plant Cell 22(11):3816–3830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19(1):75–80

    CAS  PubMed  Google Scholar 

  • Gow AJ, Duran D, Malcolm S, Ischiropoulos H (1996) Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 385(1–2):63–66

    CAS  PubMed  Google Scholar 

  • Groβ F, Durner J, Gauples F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011a) On the origins of nitric oxide. Trends Plant Sci 16(3):160–168

    CAS  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LAJ, Igamberdiev AU (2011b) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585(24):3843–3849

    CAS  PubMed  Google Scholar 

  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LACJ, Harren FJM, Cristescu SM et al (2012) Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 63(15):5581–5591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hebelstrup KH, Shahb JK, Igamberdiev AU (2013) The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol Plant 148(4):457–469

    CAS  PubMed  Google Scholar 

  • Herold S (2004) Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, hydrogen peroxide, and nitrite. Free Radic Biol Med 36(5):565–579

    CAS  PubMed  Google Scholar 

  • Hill BG, Dranka BP, Bailey SM, Lancaster JR Jr, Darley-Usmar VM (2010) What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem 285(26):19699–19704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897

    CAS  PubMed  Google Scholar 

  • Huang JM, Sommers EM, Kim-Shapiro DB, King SB (2002) Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J Am Chem Soc 124(13):3473–3480

    CAS  PubMed  Google Scholar 

  • Husain Q, Husain M, Kulshrestha Y (2009) Remediation and treatment of organopollutants mediated by peroxidases: a review. Crit Rev Biotechnol 29(2):94–119

    Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142(3):1246–1255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J et al (2013) Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell 25(2):558–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ju K-S, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74(2):250–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Kruger D et al (2014) Widespread occurrence of expressed fungal secretory peroxidases in forest soils. PLoS One 9(4):e95557

    PubMed Central  PubMed  Google Scholar 

  • Keszler A, Zhang Y, Hogg N (2010) Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radic Biol Med 48(1):55–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichumcandidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65(3):1029–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacs I, Lindermayr C (2013) Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Front Plant Sci 4:137

    PubMed Central  PubMed  Google Scholar 

  • Lee KB, Gu MB, Moon SH (2003) Degradation of 2,4,6-trinitrotoluene by immobilized horseradish peroxidase and electrogenerated peroxide. Water Res 37(5):983–992

    CAS  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze nitric oxide signalling in plant defence. Curr Opin Plant Biol 12(4):451–458

    CAS  PubMed  Google Scholar 

  • Li JL, Sulaiman M, Beckett RP, Minibayeva FV (2010) Cell wall peroxidases in the liverwort Dumortierahirsuta are responsible for extracellular superoxide production, and can display tyrosinase activity. Physiol Plant 138(4):474–484

    CAS  PubMed  Google Scholar 

  • Liers C, Ullrich R, Hofrichter M, Minibayeva FV, Beckett RP (2011) A heme peroxidase of the ascomyceteous lichen Leptogiumsaturninum oxidizes high-redox potential substrates. Fungal Genet Biol 48(12):1139–1145

    CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137(3):921–930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loganathan P, Kalyanasundaram I (1999) The melanin of the myxomycete Stemonitisherbatica. Acta Protozool 38:97–103

    CAS  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, Leon J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62(10):3501–3517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maassen A, Hennig J (2011) Effect of Medicago sativa Mhb1 gene expression on defense response of Arabidopsis thaliana plants. Acta Biochim Pol 58(3):427–432

    CAS  PubMed  Google Scholar 

  • Mann PJC, Saunders BC (1935) Studies in peroxidase action. I—The oxidation of aniline. Proc R Soc B Biol Sci 119:47–60

    CAS  Google Scholar 

  • Martí MC, Florez-Sarasa I, Camejo D, Pallol B, Ortiz A, Ribas-Carbó M et al (2013) Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves. Physiol Plant 147(2):194–206

    PubMed  Google Scholar 

  • Mastore M, Kohler L, Nappi AJ (2005) Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J 272(10):2407–2415

    CAS  PubMed  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138(4):372–383

    CAS  PubMed  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV et al (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:Pls052

    PubMed Central  PubMed  Google Scholar 

  • Murgia I, de Pinto MC, Delledonne M, Soave C, De Gara L (2004) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J Plant Physiol 161(7):777–783

    CAS  PubMed  Google Scholar 

  • Nappi AJ, Vass E (2001) The effects of nitric oxide on the oxidations of L-dopa and dopamine mediated by tyrosinase and peroxidase. J Biol Chem 276(14):11214–11222

    CAS  PubMed  Google Scholar 

  • Nuriel T, Hansler A, Gross SS (2011) Protein nitrotryptophan: formation, significance and identification. J Proteomics 74(11):2300–2312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nyanhongo GS, Schroeder M, Steiner W, Gubitz GM (2005) Biodegradation of 2,4,6-trinitrotoluene (TNT): an enzymatic perspective. Biocatal Biotransform 23(2):53–69

    CAS  Google Scholar 

  • Palmerini CA, Marmottini F, Arienti G (2012) Production of nitric oxide by human salivary peroxidase and by bovine lactoperoxidase. J Biochem Mol Toxicol 26(3):87–93

    CAS  PubMed  Google Scholar 

  • Pannala A, Razaq R, Halliwell B, Singh S, Rice-Evans CA (1998) Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration or electron donation? Free Radic Biol Med 24(4):594–606

    CAS  PubMed  Google Scholar 

  • Passardi F, Bakalovic N, Teixeira FK, Margis-Pinheiro M, Penel C, Dunand C (2007) Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 89(5):567–579

    CAS  PubMed  Google Scholar 

  • Peng L, Wollenberger U, Hofrichter M, Ullrich R, Scheibner K, Scheller FW (2010) Bioelectrocatalytic properties of Agrocybeaegerita peroxygenase. Electrochim Acta 55(27):7809–7813

    CAS  Google Scholar 

  • Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41(5):732–743

    CAS  PubMed  Google Scholar 

  • Reeder BJ, Wilson MT (2005) Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease states. Curr Med Chem 12(23):2741–2751

    CAS  PubMed  Google Scholar 

  • Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen HY, Bailly C, Kranner I (2010) Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ 33(1):59–75

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AME et al (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19(12):4120–4130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romero-Puertas MC, Campostrini N, Matte A, Righetti PG, Perazzolli M, Zolla L et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8(7):1459–1469

    CAS  PubMed  Google Scholar 

  • Ros Barceló A, Pomar F, Ferrer MA, Martínez P, Ballesta MC, Pedreño MA (2002) In situ characterization of a NO-sensitive peroxidase in the lignifying xylem of Zinnia elegans. Physiol Plant 114(1):33–40

    PubMed  Google Scholar 

  • Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K (2006) Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol 47(6):689–697

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Sakurao S, Fukunaga K, Matsubara T, Ueda-Hashimoto M, Tsukamoto S et al (2004) Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitrite-dependent protein nitration. FEBS Lett 572(1–3):27–32

    CAS  PubMed  Google Scholar 

  • Sakihama Y, Tamaki R, Shimoji H, Ichiba T, Fukushi Y, Tahara S et al (2003) Enzymatic nitration of phytophenolics: evidence for peroxynitrite-independent nitration of plant secondary metabolites. FEBS Lett 553(3):377–380

    CAS  PubMed  Google Scholar 

  • Santos A, Mendes S, Brissos V, Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 98(5):2053–2065

    CAS  PubMed  Google Scholar 

  • Savvides SN, Scheiwein M, Bohme CC, Arteel GE, Karplus PA, Becker K et al (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277(4):2779–2784

    CAS  PubMed  Google Scholar 

  • Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F (2013) Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol 200(2):473–482

    CAS  PubMed  Google Scholar 

  • Seregélyes C, Barna B, Hennig J, Konopka D, Pasternak TP, Lukács N et al (2003) Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Sci 165(3):541–550

    Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398 (Litwack G, editor, Plant hormones)

    Google Scholar 

  • Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration—functional alteration or just a biomarker? Free Radic Biol Med 45(4):357–366

    CAS  PubMed  Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53(379):2293–2303

    PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212(5–6):835–841

    PubMed  Google Scholar 

  • Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66(8):1387–1403

    CAS  PubMed  Google Scholar 

  • Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M (2009) Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephoruscucumeris Dec 1. Biodegradation 20(3):433–440

    CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C et al (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    CAS  PubMed  Google Scholar 

  • Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3:207–219

    CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G et al (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V et al (2012) Oxidative and nitrosative-based signaling and associated posttranslational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72(4):585–599

    CAS  PubMed  Google Scholar 

  • Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32(1):31–44

    CAS  PubMed  Google Scholar 

  • Uchida T, Okumura K, Ito T, Kamiya H, Nishimoto Y, Yamada M et al (2002) Quinapril treatment restores the vasodilator action of insulin in fructose-hypertensive rats. Clin Exp Pharmacol Physiol 29(5–6):381–385

    CAS  PubMed  Google Scholar 

  • Ullrich R, Nueske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybeaegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70(8):4575–4581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybeaegerita. FEBS Lett 582(29):4100–4106

    CAS  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F et al (2007) Nitrosative stress in plants. FEBS Lett 581(3):453–461

    CAS  PubMed  Google Scholar 

  • van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite—a potential additional, mechanism of nitric oxide-dependent toxicity. J Biol Chem 272(12):7617–7625

    PubMed  Google Scholar 

  • Vazquez-Duhalt R, Westlake DWS, Fedorak PM (1995) Kinetics of chemically-modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Appl Microbiol Biotechnol 42(5):675–681

    CAS  Google Scholar 

  • Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R (2012) The evolution of land plant hemoglobins. Plant Sci 191:71–81

    PubMed  Google Scholar 

  • Vinogradov SN, Moens L (2008) Diversity of globin function: enzymatic, transport, storage, and sensing. J Biol Chem 283(14):8773–8777

    CAS  PubMed  Google Scholar 

  • Wackerow-Kouzova ND (2004) Isolation and study of azobenzene-transforming soil bacteria. Appl Biochem Microbiol 41:62–64

    Google Scholar 

  • Welinder KG, Mauro JM, Norskovlauritsen L (1992) Structure of plant and fungal peroxidases. Biochem Soc Trans 20(2):337–340

    CAS  PubMed  Google Scholar 

  • Wimalasekera R, Villar C, Begum T, Scherer GFE (2011) COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4(4):663–678

    CAS  PubMed  Google Scholar 

  • Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27(5):361–422

    CAS  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478(7368):264–268

    CAS  PubMed  Google Scholar 

  • Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C (2004) Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol 136(1):2875–2886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Liu H, Hu N (2012) Electrochemical detection of natural DNA damage induced by in situ peroxidase-generated reactive nitrogen species in DNA layer-by-layer films. Bioelectrochemistry 86:67–71

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Minibayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Minibayeva, F., Beckett, R.P. (2015). The Roles of Plant Peroxidases in the Metabolism of Reactive Nitrogen Species and Other Nitrogenous Compounds. In: Gupta, K., Igamberdiev, A. (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Signaling and Communication in Plants, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-10079-1_3

Download citation

Publish with us

Policies and ethics