Skip to main content

Cooperative Paradigm for Energy Saving

  • Chapter
  • First Online:
Energy Efficient Smart Phones for 5G Networks

Abstract

Most portable devices are likely to be equipped with a variety of radio technologies, enabling multiple opportunities for wide area access. As the density of these devices increases in typical urban environments, it becomes increasingly possible and desirable to participate or establish cooperation to achieve a common goal. In this context, we consider cooperation among mobile devices within a short range area as a means to save energy at the handset device, but it has been proven that the energy savings can also proliferate to the network side. In particular, we address how cooperative strategies that exploit long range connectivity in synergy with short-range connectivity can lead to significant energy savings. Game theoretical approaches are used as an engineering tool to find the optimum configuration of cooperative clusters to minimize the energy consumption of the whole network, that also includes the mobile handset. Specific use-cases that consider selfish behaviour among mobile users is a crucial impediment hampering cooperation, however cooperative game theory is used in this work to overcome such a problem, by offering credit to cooperative users as incentive. This technique results in rewarding cooperative users, as well as detecting and isolating selfish ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzek, F., Katz, M.D. (eds.): Cooperation in Wireless Networks: Principles and Applications: Real Egoistic Behavior is to Cooperate. Springer (2006)

    Google Scholar 

  2. Lin, Y., Hsu, Y.: Multihop cellular: a new architecture for wireless communications. In: Proceedings of INFOCOM, vol. 3, pp. 1273–1282 (2000)

    Google Scholar 

  3. Le, L., Hossain, E.: Multihop cellular networks: potential gains, research challenges, and a resource allocation framework. IEEE Commun. Mag. 45(9), 66–73 (2007)

    Article  Google Scholar 

  4. Salem, N.B., Buttyán, L., Hubaux, J.P., Jakobsson, M.: Node cooperation in hybrid ad hoc networks. IEEE Trans. Mob. Comput. 5(4), 365–376 (2006)

    Article  Google Scholar 

  5. 3G TR 25.924 version 1.0.0.0: 3rd Generation Partnership Project: Technical Specification Group Radio Access Network; Opportunity Driven Multiple Access (1999)

    Google Scholar 

  6. Aggélou, G.N., Tafazolli, R.: On the relaying capability of next-generation GSM cellular networks. IEEE Pers. Commun. 8(1), 40–47 (2001)

    Article  Google Scholar 

  7. Pabst, R., et al.: Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Commun. Mag. 42(9), 80–89 (2004)

    Article  Google Scholar 

  8. Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inf. Theor. 25(5), 572–584 (1979)

    Article  MATH  Google Scholar 

  9. Van der Meulen, E.C.: Three-terminal communication channels. Adv. Appl. Probab. 3, 120–154 (1971)

    Article  MATH  Google Scholar 

  10. Laneman, J.N., Tse, D.N.C., Wornell, W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theor. 50(12), 3062–3080 (2004)

    Article  MathSciNet  Google Scholar 

  11. Laneman, J.N., Wornell, G.W.: Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. Inf. Theor. 49(10), 2415–2425 (2003)

    Article  MathSciNet  Google Scholar 

  12. Sendonaris, A., Erkip, E., Azhang, B.: User cooperation diversity—Part I: system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)

    Article  Google Scholar 

  13. Sendonaris, A., Erkip, E., Azhang, B.: User cooperation diversity—Part II: implementation aspects and performance analysis. IEEE Trans. Commun. 51(11), 1939–1948 (2003)

    Article  Google Scholar 

  14. Hunter, T.E., Nosratinia, A.: Diversity through coded cooperation. IEEE Trans. Wireless Commun. 5(2), 283–289 (2006)

    Article  MathSciNet  Google Scholar 

  15. Janani, M., Hedayat, A., Huntter, T.E., Nosratinia, A.: Coded cooperation in wireless communications: space-time transmission and iterative coding. IEEE Trans. Sig. Process. 52(2), 362–371 (2004)

    Article  Google Scholar 

  16. Sadek, A.K., Su, W., Liu, K.J.R.: Multinode cooperative communications in wireless networks. IEEE Trans. Sig. Process. 55(1), 341–355 (2007)

    Article  MathSciNet  Google Scholar 

  17. Boyer, J., Falconer, D.D., Yanikomeroglu, H.: Multihop diversity in wireless relaying channels. IEEE Trans. Commun. 52(10), 1820–1830 (2004)

    Article  Google Scholar 

  18. Kramer, G., Gaspar, M., Gupta, P.: Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inf. Theor. 51(9), 3037–3063 (2005)

    Article  MATH  Google Scholar 

  19. Zheng, L., Tse, D.N.C.: Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theor. 49(5), 1073–1096 (2003)

    Article  MATH  Google Scholar 

  20. Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)

    Article  Google Scholar 

  21. Nagpal, V.: Cooperative multiplexing in wireless relay networks. Ph.D. thesis, University of California, Berkeley (2012)

    Google Scholar 

  22. Yijia, F., Chao, W., Poor, H.V., Thompson, J.S.: Cooperative multiplexing: toward higher spectral efficiency in multiple-antenna relay networks. IEEE Trans. Inf. Theor. 55(9), 3909–3926 (2009)

    Article  Google Scholar 

  23. Shih, E., Bahl, P., Sinclair, M.J.: Wake on wireless: an event driven energy saving strategy for battery operated devices. In Proceedings 8th Annual International Conference on Mobile Computing and Networking, ACM, pp. 160–171 (2002)

    Google Scholar 

  24. Pering, T., Agarwal, Y., Gupta, R., Want, R.: CoolSpots: reducing the power consumption of wireless mobile devices with multiple radio interfaces. In: Proceedings of 4th International Conference on Mobile Systems, Applications and Services, ACM, pp. 220–232 (2006)

    Google Scholar 

  25. Yoo, J., Park, K.H.: A cooperative clustering protocol for energy saving of mobile devices with WLAN and Bluetooth interfaces. IEEE Trans. Mob. Comput. 10(5), 491–504 (2011)

    Article  Google Scholar 

  26. Gür, G., Alagöz, F.: Green wireless communications via cognitive dimension: an overview. IEEE Netw. 25(2), 50–56 (2011)

    Article  Google Scholar 

  27. C2POWER: Cognitive radio and cooperative strategies for power saving in multi-standard wireless devices. http://www.ict-c2power.eu/

  28. GREEN-T: Green terminals for next generation wireless systems. http://greent.av.it.pt/

  29. Radwan, A., Rodriguez, J.: Energy saving in multi-standard mobile terminals through short-range cooperation. EURASIP J. Wirel. Commun. Networking 2012(159), 1–15 (2012)

    Google Scholar 

  30. Saghezchi, F.B., Radwan, A., Rodriguez, J.: Energy efficiency performance of WiFi/WiMedia relaying in hybrid ad-hoc networks. In: Proceedings of IEEE 3rd International Conference on Communications and Information Technology (ICCIT), pp. 285–289 (2013)

    Google Scholar 

  31. Saghezchi, F.B., Radwan, A., Alam, M., Rodriguez, J.: Cooperative strategies for power saving in multi-standard wireless devices, pp. 284–296. Springer, Berlin Heidelberg (2013). (The Future Internet)

    Google Scholar 

  32. Myerson, R.B.: Game Theory Analysis of Conflict. Harvard University Press, Cambridge (1991)

    Google Scholar 

  33. MacKenzie, A.B., DaSilva, L.A.: Game Theory for Wireless Engineers. Morgan and Claypool Publishers, San Refael (2006)

    Google Scholar 

  34. Felegyhazi, M., Hubaux, J.: Game theory in wireless networks: a tutorial. Technical report LCA-REPORT-2006-002, EPFL (2006)

    Google Scholar 

  35. Srivastava, V.: Using game theory to analyze wireless ad hoc networks. IEEE Commun. Surv. Tutorials 7(4), 46–56 (2005)

    Article  Google Scholar 

  36. Félegyázi, M., Hubaux, J., Buttyán, L.: Nash equilibrium of packet forwarding strategies in wireless ad hoc networks. IEEE Trans. Mob. Comput. 5(5), 463–476 (2006)

    Article  Google Scholar 

  37. Yang, J., Klein, A.G., Brown, D.R.III.: Natural cooperation in wireless networks. IEEE Sig. Process. Mag. 26(5), 98–106 (2009)

    Google Scholar 

  38. Srinivasan, V., Nuggehalli, P., Chiasserini, C.F., Rao, R.R.: An analytical approach to the study of cooperation in wireless ad hoc networks. IEEE Trans. Wirel. Commun. 4(2), 722–733 (2005)

    Article  Google Scholar 

  39. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Basar, T.: Coalitional game theory for communication networks. IEEE Sig. Process. Mag. 26(5), 77–97 (2009)

    Article  Google Scholar 

  40. Saghezchi, F.B., Nascimento, A., Albano, M., Radwan, A., Rodriguez, J.: A novel relay selection game in cooperative wireless networks based on combinatorial optimizations. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC Spring). Budapest (2011)

    Google Scholar 

  41. Saghezchi, F.B., Radwan, A., Nascimento, A., Rodriguez, J.: An incentive mechanism based on coalitional game for fair cooperation of mobile users in HANETs. In: Proceedings of IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). pp. 378–382 (2012)

    Google Scholar 

  42. Saghezchi, F.B., Radwan, A., Rodriguez, J., Dagiuklas, T.: Coalition formation game towards green mobile terminals in heterogeneous wireless networks. IEEE Wirel. Commun. Mag. 20(5), 85–91 (2013)

    Article  Google Scholar 

  43. Buttyán, L., Hubaux, J.P., Nuglets, A.: Virtual currency to stimulate cooperation in self organized mobile ad hoc networks. Technical report, no. DSC/2001 (2001)

    Google Scholar 

  44. Jakobsson, M., Hubaux, J.P., Buttyán, L.: A micro-payment scheme encouraging collaboration in multi-hop cellular networks, pp. 15–33. Springer, Berlin Heidelberg (2003). (Financial Cryptography)

    Google Scholar 

  45. Salem, N.B., Levente, B., Hubaux, J.P., Jakobsson, M.: A charging and rewarding scheme for packet forwarding in multi-hop cellular networks. In: Proceedings of MOBIHOC ’03. Maryland, USA (2003)

    Google Scholar 

  46. Zhong, S., Chen, J., Yang, Y.R.: Sprite: a simple, cheat- proof, credit-based system for mobile ad hoc networks. In: Proceedings of IEEE INFOCOM ’03, vol. 3. pp. 1987–1997 (2003)

    Google Scholar 

  47. Buchegger, S., Boudec, J.L.: Performance analysis of the CONFIDANT protocol. In: Proceedings of 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 226–236. Lausanne (2002)

    Google Scholar 

  48. Michiardi, P., Molva, R.: CORE: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. In: Proceedings of IFIP-Communication and Multi-media Security Conference (2002)

    Google Scholar 

  49. Bansal, S., Baker, M.: Observation-based cooperation enforcement in ad hoc networks. http://arxiv.org/pdf/cs/0307012v2 (2003)

  50. He, Q., Wu, D., Khosla, P.: SORI: a secure and objective reputation-based incentive scheme for ad hoc networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, pp. 825–830 (2004)

    Google Scholar 

  51. Rebahi, Y., Mujica, V., Simons, C., Sisalem, D.: SAFE: securing packet forwarding in ad hoc networks. In: Proceedings of the 5th Workshop on Applications and Services in Wireless Networks (ASWN). Paris (2005)

    Google Scholar 

  52. Jaramillo, J.J., Srikant, R.: DARWIN: distributed and adaptive reputation mechanism for wireless ad-hoc networks. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking (MOBICOM ’07). Montréal (2007)

    Google Scholar 

  53. Hong, Y.W., Huang, W.J., Chiu, F.H., Kuo, C.C.: Cooperative communications in resource-constrained wireless networks. IEEE Sig. Process. Mag. 24(3), 47–57 (2007)

    Article  Google Scholar 

  54. Wei, H.Y., Gitlin, R.D.: Two-hop-relay architecture for next generation WWAN/WLAN integration. IEEE Wirel. Commun. Mag. 11(2), 24–30 (2004)

    Article  Google Scholar 

  55. Li, G.Y., et al.: Energy-efficient wireless communications: tutorial, survey, and open issues. IEEE Wirel. Commun. Mag. 18(6), 28–35 (2011)

    Article  Google Scholar 

  56. Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theory 1(1), 111–130 (1972)

    Article  MathSciNet  Google Scholar 

  57. Data sheet: Cisco Aironet 80.11 a/b/g wireless CardBus adapter. http://www.cisco.com/en/US/prod/collateral/wireless/ps6442/ps4555/ps5818/product_data_sheet09186a00801ebc29.pdf

  58. IEEE 802.11g: Part 11, Amendment 4. http://standards.ieee.org/getieee802/download/802.11g-2003.pdf

  59. ECMA-368: Standard: high rate ultra wideband PHY and MAC standard. 3rd ed., Dec. 2008. http://www.ecmainternational.org/publications/files/ECMA-ST/ECMA-368.pdf

  60. Sandner, C., et al.: A WiMedia/MBOA-compliant CMOS RF transceiver for UWB. IEEE J. Solid-State Circuits 41(12), 2787–2794 (2006)

    Article  Google Scholar 

  61. Data sheet: Cisco Aironet 1200 Series Access Points. http://www.cisco.com/en/US/prod/collateral/wireless/ps5678/ps430/ps4076/product_data_sheet09186a00800937a6.pdf

Download references

Acknowledgments

This work is supported by the grant of the Fundação para a Ciência e a Tecnologia (FCT-Portugal), with the reference number: SFRH/BD/79909/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firooz B. Saghezchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saghezchi, F.B., Radwan, A., Rodriguez, J. (2015). Cooperative Paradigm for Energy Saving. In: Radwan, A., Rodriguez, J. (eds) Energy Efficient Smart Phones for 5G Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10314-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10314-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10313-6

  • Online ISBN: 978-3-319-10314-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics