Skip to main content

Theory of Relativistic Jets

  • Chapter
  • First Online:
The Formation and Disruption of Black Hole Jets

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 414))

Abstract

Relativistic jets can be modeled as magnetohydrodynamic flows. We analyze the related equations and discuss the involved acceleration mechanisms, their relation to the collimation, to the jet confinement by its environment, and to possible rarefaction waves triggered by pressure imbalances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If Ω is the same in all streamlines as is often the case in pulsar winds, this surface is a cylinder, called light cylinder.

  2. 2.

    Note that B ϕ  < 0 so that both parts of the angular momentum are positive.

  3. 3.

    As in the case of the angular momentum, both parts are positive since B ϕ  < 0.

  4. 4.

    The function M f shows where the fast-magnetosonic surface is located. Besides that, M f is related to the Mach-cone of the propagation of fast magnetosonic waves in the super-fast regime. This cone has half opening angle \(\arctan (M_{f}^{2} - 1)^{-1/2}\) (the cone’s symmetry axis coincides with the poloidal field line).

  5. 5.

    Actually the equations describing the effect in planar geometry can be found from the corresponding ones in cylindrical geometry by replacing \(\varpi \rightarrow \varpi _{0} + x\), \(z \rightarrow z_{0} + z\), \(A/\varpi _{0} \rightarrow A\), \(\varpi _{0}\varOmega /c \rightarrow \chi\), \(x_{\mathrm{A}} \rightarrow \chi _{\mathrm{A}}\), \(L/\varpi _{0} \rightarrow P =\mu c\chi _{\mathrm{A}}^{2}/\chi\), \(\varpi _{\mathrm{A}}/\varpi _{0} \rightarrow \chi _{\mathrm{A}}/\chi\), and then taking the limit \(\varpi _{0} \rightarrow \infty \).

References

  • Aloy, M.A., Rezzolla, L.: A powerful hydrodynamic booster for relativistic jets. ApJ 640, L115 (2006). doi:10.1086/503608

    Article  ADS  Google Scholar 

  • Bekenstein, J.D., Oron, E.: New conservation laws in general-relativistic magnetohydrodynamics. Phys. Rev. D 18, 1809 (1978)

    Article  ADS  Google Scholar 

  • Beskin, V.S.: MHD flows in compact astrophysical objects: accretion, winds and jets. Springer, Berlin/Heidelberg (2010)

    Book  Google Scholar 

  • Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199, 883 (1982)

    Article  ADS  MATH  Google Scholar 

  • Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. MNRAS 179, 433 (1977)

    Article  ADS  Google Scholar 

  • Camenzind, M.: Centrifugally driven MHD-winds in active galactic nuclei. A&A 156, 137 (1986)

    ADS  Google Scholar 

  • Contopoulos, J.: Magnetically driven relativistic jets and winds: exact solutions. ApJ 432, 508 (1994). doi:10.1086/174590

    Article  ADS  Google Scholar 

  • Fendt, C., Ouyed, R.: Ultrarelativistic magnetohydrodynamic jets in the context of gamma-ray bursts. ApJ 608, 378 (2004). doi:10.1086/386363

    Article  ADS  Google Scholar 

  • Granot, J.: Interaction of a highly magnetized impulsive relativistic flow with an external medium. MNRAS 421, 2442 (2012). doi:10.1111/j.1365-2966.2012.20473.x

    Article  ADS  Google Scholar 

  • Granot, J., Komissarov, S.S., Spitkovsky, A.: Impulsive acceleration of strongly magnetized relativistic flows. MNRAS 411, 1323 (2011). doi:10.1111/j.1365-2966.2010.17770.x

    Article  ADS  Google Scholar 

  • Komissarov, S.S., Barkov, M.V., Vlahakis, N., Königl, A.: Magnetic acceleration of relativistic active galactic nucleus jets. MNRAS 380, 51 (2007). doi:10.1111/j.1365-2966.2007.12050.x

    Article  ADS  Google Scholar 

  • Komissarov, S.S., Vlahakis, N., Königl, A., Barkov, M.V.: Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. MNRAS 394, 1182 (2009). doi:10.1111/j.1365-2966.2009.14410.x

    Article  ADS  Google Scholar 

  • Komissarov, S.S., Vlahakis, N., Königl, A.: Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources. MNRAS 407, 17 (2010). doi:10.1111/j.1365-2966.2010.16779.x

    Article  ADS  Google Scholar 

  • Li, Z.Y., Chiueh, T., Begelman, M.C.: Electromagnetically driven relativistic jets - a class of self-similar solutions. ApJ 394, 459 (1992). doi:10.1086/171597

    Article  ADS  Google Scholar 

  • Lovelace, R.V.E., Mehanian, C., Mobarry, C.M., Sulkanen, M.E.: Theory of axisymmetric magnetohydrodynamic flows - disks. ApJS 62, 1 (1986). doi:10.1086/191132

    Article  ADS  Google Scholar 

  • Lyutikov, M.: Simple waves in relativistic fluids. Phys. Rev. E 82(5), 056305 (2010). doi:10.1103/PhysRevE.82.056305

    Article  ADS  Google Scholar 

  • Marti, J.M., Muller, E.: Analytical solution of the Riemann problem in relativistic hydrodynamics. J. Fluid Mech. 258, 317 (1994). doi:10.1017/S0022112094003344

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Matsumoto, J., Masada, Y., Shibata, K.: Effect of interacting rarefaction waves on relativistically hot jets. ApJ 751, 140 (2012). doi:10.1088/0004-637X/751/2/140

    Article  ADS  Google Scholar 

  • Michel, F.C.: Relativistic stellar-wind torques. ApJ 158, 727 (1969)

    Article  ADS  Google Scholar 

  • Millas, D., Katsoulakos, G., Lingri, D., Karampelas, K., Vlahakis, N.: Solutions of the wind equation in relativistic magnetized jets. Int. J. Mod. Phys. Conf. Ser. 28, 1460200 (2014). doi:10.1142/S2010194514602002

    Article  Google Scholar 

  • Mizuno, Y., Hardee, P., Hartmann, D.H., Nishikawa, K.I., Zhang, B.: A magnetohydrodynamic boost for relativistic jets. ApJ 672, 72 (2008). doi:10.1086/523625

    Article  ADS  Google Scholar 

  • Okamoto, I.: Relativistic centrifugal winds. MNRAS 185, 69 (1978)

    Article  ADS  Google Scholar 

  • Sapountzis, K., Vlahakis, N.: Rarefaction acceleration in magnetized gamma-ray burst jets. MNRAS 434, 1779 (2013). doi:10.1093/mnras/stt1142

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C., Narayan, R.: Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. MNRAS 388, 551 (2008). doi:10.1111/j.1365-2966.2008.13425.x

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C., Narayan, R.: Efficiency of magnetic to kinetic energy conversion in a monopole magnetosphere. ApJ 699, 1789 (2009). doi:10.1088/0004-637X/699/2/1789

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Magnetohydrodynamic simulations of gamma-ray burst jets: beyond the progenitor star. NewA 15, 749 (2010). doi:10.1016/j.newast.2010.03.001

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS 418, L79 (2011). doi:10.1111/j.1745-3933.2011.01147.x

    Article  ADS  Google Scholar 

  • Toma, K., Takahara, F.: Efficient acceleration of relativistic magnetohydrodynamic jets. Prog. Theor. Exp. Phys. 2013(8), 083E02 (2013). doi:10.1093/ptep/ptt058

    Google Scholar 

  • Vlahakis, N.: The efficiency of the magnetic acceleration in relativistic jets. Ap&SS 293, 67 (2004a). doi:10.1023/B:ASTR.0000044653.77654.fb

    Article  ADS  Google Scholar 

  • Vlahakis, N.: Ideal magnetohydrodynamic solution to the σ problem in crab-like pulsar winds and general asymptotic analysis of magnetized outflows. ApJ 600, 324 (2004b). doi:10.1086/379701

    Article  ADS  Google Scholar 

  • Vlahakis, N., Königl, A.: Relativistic magnetohydrodynamics with application to gamma-ray burst outflows. I. theory and semianalytic trans-alfvénic solutions. ApJ 596, 1080 (2003a). doi:10.1086/378226

    Google Scholar 

  • Vlahakis, N., Königl, A.: Relativistic magnetohydrodynamics with application to gamma-ray burst outflows. II. semianalytic super-alfvénic solutions. ApJ 596, 1104 (2003b). doi:10.1086/378227

    Google Scholar 

  • Vlahakis, N., Königl, A.: Magnetic driving of relativistic outflows in active galactic nuclei. I. interpretation of parsec-scale accelerations. ApJ 605, 656 (2004). doi:10.1086/382670

    Google Scholar 

  • Zenitani, S., Hesse, M., Klimas, A.: Scaling of the anomalous boost in relativistic jet boundary layer. ApJ 712, 951 (2010). doi:10.1088/0004-637X/712/2/951

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Vlahakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vlahakis, N. (2015). Theory of Relativistic Jets. In: Contopoulos, I., Gabuzda, D., Kylafis, N. (eds) The Formation and Disruption of Black Hole Jets. Astrophysics and Space Science Library, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-319-10356-3_7

Download citation

Publish with us

Policies and ethics