Skip to main content

Real Polynomial Root-Finding by Means of Matrix and Polynomial Iterations

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Included in the following conference series:

  • 972 Accesses

Abstract

Frequently one seeks approximation to all r real roots of a polynomial of degree n with real coefficients, which also has nonreal roots. We split a polynomial into two factors, one of which has degree r and has r real roots. We approximate them at a low cost, and then decrease the arithmetic time of the known algorithms for this popular problem by roughly a factor of n/k, if k iterations prepare splitting. k is a small integer unless some nonreal roots lie close to the real axis, but even if there nonreal roots near the real axis, we substantially accelerate the known algorithms. We also propose a dual algorithm, operating with the associated structured matrices. At the price of minor increase of the arithmetic time, it facilitates numerical implementation. Our analysis and tests demonstrate the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial GCD based on structured matrix computations. In: Operator Theory: Advances and Applications, vol. 199, pp. 155–173. Birkhäuser Verlag, Basel (2010)

    Google Scholar 

  2. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations. Fundamental Algorithms, vol. 1. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  3. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for splitting a polynomial into factors. J. Complexity 12, 492–511 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bini, D., Pan, V.Y.: Computing matrix eigenvalues and polynomial zeros where the output is real. SIAM J. on Computing 27(4), 1099–1115 (1998); (Also in Proc. of SODA 1991)

    Google Scholar 

  5. Bini, D.A., Robol, L.: Solving secular and polynomial equations: A multiprecision algorithm. J. Computational and Applied Mathematics (in press)

    Google Scholar 

  6. Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots of a polynomial with real roots. J. Complexity 6(4), 417–442 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cardinal, J.P.: On two iterative methods for approximating the roots of a polynomial. Lectures in Applied Mathematics 32, 165–188 (1996)

    MathSciNet  Google Scholar 

  8. Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration. Math. Comput. 66(217), 345–361 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. Amer. Math. Monthly 66, 464–466 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  12. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review 53(2), 217–288 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part 2, XXII + 718 pages. Elsevier (2013)

    Google Scholar 

  14. Pan, V.Y.: Complexity of computations with matrices and polynomials. SIAM Review 34(2), 225–262 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp. on Theory of Computing, pp. 741–750. ACM Press, New York (1995)

    Google Scholar 

  16. Pan, V.Y.: New fast algorithms for polynomial interpolation and evaluation on the Chebyshev node set. Computers Math. Appls. 35(3), 125–129 (1998)

    Article  MATH  Google Scholar 

  17. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser, Boston. Springer, New York (2001)

    Book  Google Scholar 

  18. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. J. Symb. Computations 33(5), 253–267 (2002); Proc. version in ISSAC 2001, pp. 253–267, ACM Press, New York (2001)

    Google Scholar 

  19. Pan, V.Y., Qian, G., Yan, X.: Supporting GENP and Low-rank Approximation with Random Multipliers. Technical Report TR 2014008, PhD Program in Computer Science. Graduate Center, CUNY (2014), http://www.cs.gc.cuny.edu/tr/techreport.php?id=472

  20. Pan, V.Y., Qian, G., Zheng, A.: Real and complex polynomial root-finding via eigen-solving and randomization. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 283–293. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Pan, V.Y., Tsigaridas, E.P.: On the Boolean Complexity of the Real Root Refinement. Tech. Report, INRIA (2013), http://hal.inria.fr/hal-00960896 ; Proc. version in: M. Kauers (ed.) Proc. Intern. Symposium on Symbolic and Algebraic Computation (ISSAC 2013), pp. 299–306, Boston, MA, June 2013. ACM Press, New York (2013)

  22. Pan, V.Y., Tsigaridas, E.P.: Nearly optimal computations with structured matrices. In: SNC 2014. ACM Press, New York (2014); Also April 18, 2014, arXiv:1404.4768 [math.NA] and, http://hal.inria.fr/hal-00980591

  23. Pan, V.Y., Zheng, A.: New progress in real and complex Ppolynomial root-finding. Computers Math. Applics. 61(5), 1305–1334 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schönhage, A.: The Fundamental Theorem of Algebra in Terms of Computational Complexity. Math. Department, Univ. Tübingen, Germany (1982)

    Google Scholar 

  25. Sagraloff, M., Mehlhorn, K.: Computing Real Roots of Real Polynomials, CoRR, abstract 1308.4088 (2013)

    Google Scholar 

  26. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pan, V.Y. (2014). Real Polynomial Root-Finding by Means of Matrix and Polynomial Iterations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics