Skip to main content

Experimental Observations of Superlubricity and Thermolubricity

  • Chapter
  • First Online:
Fundamentals of Friction and Wear on the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

  • 3264 Accesses

Abstract

The chapter introduces and discusses nanoscale effects called superlubricity and thermolubricity. Superlubricity is the phenomenon in which two surfaces slide over each other in dry contact without the atomic-scale instabilities. Superlubricity can reduce friction forces by orders of magnitude. Thermolubricity is the effect that thermal excitations significantly assist the contact between two bodies in overcoming the energy barriers against sliding, resulting in a reduction of the friction forces of contacts that are not superlubric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 59, 1942 (1987)

    Article  ADS  Google Scholar 

  2. S. Fujisawa et al., J. Vac. Sci. Technol. B 12, 1635 (1994)

    Article  Google Scholar 

  3. S. Morita, S. Fujisawa, Y. Sugawara, Surf. Sci. Rep. 23, 1 (1996)

    Article  ADS  Google Scholar 

  4. R. Bennewitz et al., Phys. Rev. B 60, R11301 (1999)

    Article  ADS  Google Scholar 

  5. G.J. Germann et al., J. Appl. Phys. 73, 163 (1993)

    Article  ADS  Google Scholar 

  6. R.J.A. van den Oetelaar, C.F.J. Flipse, Surf. Sci. Lett. 384, L828 (1997)

    Article  Google Scholar 

  7. R.W. Carpick, Q. Dai, D.F. Ogletree, M. Salmeron, Tribol. Lett. 5, 91 (1998)

    Article  Google Scholar 

  8. L. Howald et al., J. Vac. Sci. Technol. B 12, 2227 (1994)

    Article  Google Scholar 

  9. R. Lüthi et al., J. Vac. Sci. Technol. B 14, 1280 (1996)

    Article  Google Scholar 

  10. L. Prandtl, ZS f. angew. Math. u. Mech. 8, 85 (1928)

    Article  MATH  Google Scholar 

  11. G.A. Tomlinson, Phil. Mag. S.7 7, 905 (1929)

    Google Scholar 

  12. S. Aubry, The New Concept by Breaking of Analyticity in a Crystallographic Model, in Solitons and Condensed Matter Physics, ed. by A.R. Bishop, T. Schneider (Springer, Berlin, 1979), p. 264

    Google Scholar 

  13. S. Aubry, Phys. D 7, 240 (1983)

    Article  MathSciNet  Google Scholar 

  14. K. Shinjo, M. Hirano, Surf. Sci. 283, 473 (1993)

    Article  ADS  Google Scholar 

  15. M. Hirano, K. Shinjo, Phys. Rev. B 41, 11837 (1990)

    Article  ADS  Google Scholar 

  16. M.R. Sørensen, K.W. Jacobsen, P. Stoltze, Phys. Rev. B 53, 2101 (1996)

    Article  ADS  Google Scholar 

  17. M.H. Müser, Europhys. Lett. 66, 97 (2004)

    Article  ADS  Google Scholar 

  18. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata, Phys. Rev. Lett. 67, 2642 (1991)

    Article  ADS  Google Scholar 

  19. J.S. Ko, A.J. Gellman, Langmuir 16, 8343 (2000)

    Article  Google Scholar 

  20. J.M. Martin, C. Donnet, T. LeMogne, T. Epicier, Phys. Rev. B 48, 10583 (1993)

    Article  ADS  Google Scholar 

  21. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata, Phys. Rev. Lett. 78, 1448 (1997)

    Article  ADS  Google Scholar 

  22. T. Zijlstra et al., Sens. Actuators A 84, 18 (2000)

    Article  Google Scholar 

  23. M. Dienwiebel et al., Rev. Sci. Instrum. 76, 043704 (2005)

    Article  ADS  Google Scholar 

  24. M. Dienwiebel et al., Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  25. M. Dienwiebel et al., Surf. Sci. 576, 197 (2005)

    Article  ADS  Google Scholar 

  26. G.S. Verhoeven, M. Dienwiebel, J.W.M. Frenken, Phys. Rev. B 70, 165418 (2004)

    Article  ADS  Google Scholar 

  27. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)

    Article  ADS  Google Scholar 

  28. T. Baumberger, P. Berthoud, C. Caroli, Phys. Rev. B 60, 3928 (1999)

    Article  ADS  Google Scholar 

  29. C. Caroli, P. Nozières, in Physics of Sliding Friction, Vol. 311 of NATO ASI Series E: Applied Sciences, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht, 1996), p. 27

    Google Scholar 

  30. E. Gnecco et al., Phys. Rev. Lett. 84, 1172 (2000)

    Article  ADS  Google Scholar 

  31. Y. Sang, M. Dubé, M. Grant, Phys. Rev. Lett. 87, 174301 (2001)

    Article  ADS  Google Scholar 

  32. E. Riedo et al., Phys. Rev. Lett. 91, 084502 (2003)

    Article  ADS  Google Scholar 

  33. K.B. Jinesh, J.W.M. Frenken, Phys. Rev. Lett. 96, 166103 (2006)

    Google Scholar 

  34. S.Y. Krylov et al., Phys. Rev. E 71, 065101(R) (2005)

    Article  ADS  Google Scholar 

  35. W. Bragg, An Introduction to Crystal Analysis (G.Bell and Sons Ltd., London, 1928)

    Google Scholar 

  36. G.I. Finch, Proc. Phys. Soc. A 63, 785 (1950)

    Article  ADS  Google Scholar 

  37. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1964)

    Google Scholar 

  38. Y. Liu, A. Erdemir, E.I. Meletis, Surf. Coat. Technol. 86–87, 564 (1996)

    Article  Google Scholar 

  39. K. Miura, S. Kamiya, N. Sasaki, Phys. Rev. Lett. 90, 055509 (2003)

    Article  ADS  Google Scholar 

  40. M.R. Falvo et al., Nature 397, 236 (1999)

    Article  ADS  Google Scholar 

  41. M.R. Falvo, J. Steele, R.M. Taylor II, R. Superfine, Phys. Rev. B 62, R10665 (2000)

    Article  ADS  Google Scholar 

  42. J. Cumings, A. Zettl, Science 289, 602 (2000)

    Article  ADS  Google Scholar 

  43. C. Ritter, M. Heyde, B. Stegemann, K. Rademann, Phys. Rev. B 71, 085405 (2005)

    Article  ADS  Google Scholar 

  44. C. Ritter, Private communication

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to a large number of people for their valuable contributions to the work reviewed in this chapter. In particular we mention J.A. Heimberg for the design and construction of the friction force microscope, K.B. Jinesh and N. Pradeep for performing part of the experiments and analysis, S. Yu. Krylov for setting up the theory of thermolubricity and G.S. Verhoeven and H. Valk for numerical calculations of superlubricity and thermolubricity. The work presented in Sects. 8.2.1 and 8.3.2 is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)” and was made possible by financial support of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dienwiebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dienwiebel, M., Frenken, J.W.M. (2015). Experimental Observations of Superlubricity and Thermolubricity. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_8

Download citation

Publish with us

Policies and ethics