Skip to main content

Algorithmic Insights into Finite-State Robots

  • Chapter
  • First Online:
Robots and Lattice Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 13))

Abstract

Modern technology has enabled the deployment of small computers that can act as the “brains” of mobile robots. Multiple advantages accrue if one can deploy simpler computers rather than more sophisticated ones: For a fixed cost, one can deploy more computers, hence benefit from more concurrent computing and/or more fault-tolerant design—both major issues with assemblages of mobile “intelligent” robots. This chapter explores the capabilities and limitations of computers that execute simply structured finite-state programs . The robots of interest operate within constrained physical settings such as warehouses or laboratories; they operate on tesselated “floors” within such settings—which we view formally as meshes of tiles. The major message of the chapter is that teams of (identical) robots whose “intellects” are powered by finite-state programs are capable of more sophisticated algorithmics than one might expect, even when the robots must operate: (\(a\)) without the aid of centralized control and (\(b\)) using algorithms that are scalable, in the sense that they work in meshes/“floors” of arbitrary sizes. A significant enabler of robots’ algorithmic sophistication is their ability to use their host mesh’s edges—i.e., the walls of the warehouses or laboratories—when orchestrating their activities. The capabilities of our “finite-state robots” are illustrated via a variety of algorithmic problems that involve path planning and exploration, in addition to the rearranging of labeled objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For positive integers \(i\) and \(j > i\), we denote by \([i,j]\) the set \(\{i, i+1, \ldots , j\}\).

  2. 2.

    See, e.g., [16] for a view of real robotic rearrangement problems.

References

  1. Adler, F., Gordon, D.: Information collection and spread by networks of patrolling ants. Am. Nat. 140, 373–400 (1992)

    Article  Google Scholar 

  2. Basu, P., Redi, J.: Movement control algorithms for realization of fault-tolerant ad hoc robot networks. IEEE Netw. 18(4), 36–44 (2004)

    Google Scholar 

  3. Bender, M., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: 35th IEEE Symposium on Foundations of Computer Science, pp. 75–85 (1994)

    Google Scholar 

  4. Bhatt, S., Even, S., Greenberg, D., Tayar, R.: Traversing directed eulerian mazes. J. Graph Algorithms Appl. 6, 157–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, M., Sakoda, W.: On the capability of finite automata in 2 and 3 dimensional space. In: 18th IEEE Symposium on Foundations of Computer Science, pp. 147–161 (1977)

    Google Scholar 

  6. Böhringer, K.F.: Modeling and controlling parallel tasks in droplet-based microfluidic systems. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, pp. 329–339 (2006)

    Google Scholar 

  7. Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recognizable picture languages. In: 2nd International Conference on Language and Automata Theory and Applications (LATA’07) (2007)

    Google Scholar 

  8. Budach, L.: On the solution of the labyrinth problem for finite automata. Elektronische Informationsverarbeitung und Kybernetik (EIK) 11(10–12), 661–672 (1975)

    MathSciNet  MATH  Google Scholar 

  9. Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata model of flow in FSM trails: non-monotonic variation of speed with density. J. Phys. A Math. Gen. 35, L573–L577 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4, 1–18 (2008)

    Google Scholar 

  11. Geer, D.: Small robots team up to tackle large tasks. IEEE Distrib. Syst. Online 6(12), 2 (2005). doi:10.1109/MDSO.2005.66

  12. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int’l. J. Pattern Recogn. Artif. Intell. 6(2–3), 241–256 (1992)

    Article  Google Scholar 

  13. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages III, pp. 215–267. Springer, Heidelberg (1996)

    Google Scholar 

  14. Goles, E., Martinez, S. (eds.): Cellular Automata and Complex Systems. Kluwer, Amsterdam (1999)

    MATH  Google Scholar 

  15. Gruska, J., La Torre, S., Parente, M.: Optimal time and communication solutions of firing squad synchronization problems on square arrays, toruses and rings. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) Developments in Language Theory, pp. 200–211. Lecture Notes in Computer Science, vol. 3340, Springer, Heidelberg (2004)

    Google Scholar 

  16. http://www.kivasystems.com/

  17. Kobayashi, K.: The firing squad synchronization problem for two-dimensional arrays. Inf. Control 34, 177–197 (1977)

    Article  MATH  Google Scholar 

  18. Koenig, S., Szymanski, B., Liu, Y.: Efficient and inefficient ant coverage methods. Ann. Math. Artif. Intell. 31, 41–76 (2001)

    Article  Google Scholar 

  19. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable picture languages. Inf. Comput. 138, 160–169 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theor. Comput. Sci. 178(1–2), 275-283 (1997)

    Google Scholar 

  21. Lothaire, M.: Combinatorics on words. In: Lyndon, G.-C., Rota, R. Lyndon, (eds.) Cambridge Mathematical Library, vol. 17. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  22. Marchese, F.: Cellular automata in robot path planning. In: EUROBOT’96, pp. 116–125 (1996)

    Google Scholar 

  23. Mazoyer, J.: On optimal solutions to the firing squad synchronization problem. Theor. Comput. Sci. 168(2), 367–404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milgram, D.L.: A region crossing problem for array-bounded automata. Inf. Control 31(2), 147–152 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moore, E.F.: Gedanken experiments on sequential machines. Automa Studies. In: Shannon, C.E., McCarthy, J. (eds.) Annals of Mathematics Studies, vol. 34, pp. 129–153. Princeton University Press, Princeton (1956)

    Google Scholar 

  26. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1962)

    Google Scholar 

  27. Müller, H.: Endliche Automaten und Labyrinthe. Elektronische Informationsverarbeitung und Kybernetik (EIK) 11(10–12), 661–672 (1975)

    Google Scholar 

  28. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  29. Reinhardt, K.: On some recognizable picture-languages. In: Brim, L. (ed.) 23rd Conference on Mathematical Foundations of Computer Science, pp. 760–770. Lecture Notes in Computer Science, vol. 1450, Springer, Heidelberg (1998)

    Google Scholar 

  30. Rosenberg, A.L.: The Pillars of Computation Theory: State, Encoding, Nondeterminism. Universitext Series, Springer, Heidelberg (2009)

    Google Scholar 

  31. Rosenberg, A.L.: The parking problem for finite-state robots. J. Graph Algorithms Appl. 16(2), 483–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosenberg, A.L.: Cellular ANTomata. Adv. Complex Syst. 15(6) (2012)

    Google Scholar 

  33. Rosenberg, A.L.: Region management by finite-state robots. Comput. J. 57(1), 59–72 (2014). doi:10.1093/comjnl/bxs150

  34. Rosenberg, A.L.: Finite-state robots in a warehouse: achieving linear parallel speedup while rearranging objects. In: 42nd Intenational Conference on Parallel Processing (ICPP) (2013)

    Google Scholar 

  35. Russell, R.: Heat trails as short-lived navigational markers for mobile robots. In: International Conference on Robotics and Automation, pp. 3534–3539 (1997)

    Google Scholar 

  36. Shinahr, I.: Two- and three-dimensional firing-squad synchronization problems. Inf. Control 24, 163–180 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Spezzano, G., Talia, D.: The CARPET programming environment for solving scientific problems on parallel computers. Parallel Distrib. Comput. Pract. 1, 49–61 (1998)

    Google Scholar 

  38. von Neumann, J.: In: Burks, A.W. (ed.) The Theory of Self-reproducing Automata. University of Illinois Press, Urbana-Champaign (1966)

    Google Scholar 

  39. Wolfram, S. (ed.): Theory and Application of Cellular Automata. Addison-Wesley, Reading (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, A.L. (2015). Algorithmic Insights into Finite-State Robots. In: Sirakoulis, G., Adamatzky, A. (eds) Robots and Lattice Automata. Emergence, Complexity and Computation, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-10924-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10924-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10923-7

  • Online ISBN: 978-3-319-10924-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics