Skip to main content

IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm

  • Chapter
  • First Online:
Computational Intelligence Applications in Modeling and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 575))

Abstract

In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (α, β, γ, δ) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 × 10−3 seconds with a position error fitness around 3.116 × 10−8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 × 10−9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammar, B., Chouikhi, N., Alimi, A.M., Chérif, F., Rezzoug, N., Gorce, P.: Learning to walk using a recurrent neural network with time delay. In: Artificial Neural Networks and Machine Learning–ICANN, pp. 511–518. Springer, Heidelberg (2013)

    Google Scholar 

  2. Asfour, T., Dillmann, R.: Human-like motion of a humanoid robot arm based on a closed-form solution of the inverse kinematics problem. In: Intelligent Robots and Systems (IROS 2003), vol. 2, pp. 1407–1412 (2003)

    Google Scholar 

  3. Azevedo, C., Andreff, N., Arias, S.: BIPedal walking: from gait design to experimental analysis. Mechatronics 14(6), 639–665 (2004)

    Article  Google Scholar 

  4. Buckley, K.A., Simon H., Brian C.H.T.: Solution of inverse kinematics problems of a highly kinematically redundant manipulator using genetic algorithms. IET, pp. 264–269 (1997)

    Google Scholar 

  5. Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17 (2004)

    Google Scholar 

  6. Çavdar, T., Mohammad, M., Milani, R.A.: A new heuristic approach for inverse kinematics of robot arms. Adv. Sci. Lett. 19(1), 329–333 (2013)

    Article  Google Scholar 

  7. Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans. Control Syst. Technol. 2(2), 123–134 (1994)

    Article  Google Scholar 

  8. De Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size and crossover in genetic algorithms. In: Parallel Problem Solving from Nature, pp. 38–47. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Google Scholar 

  10. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1, pp. 39–43 (1995)

    Google Scholar 

  11. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86 (2001)

    Google Scholar 

  12. Edison, E., Shima, T.: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 38(1), 340–356 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Juang, J.G.: Fuzzy neural network approaches for robotic gait synthesis. IEEE Trans. Syst. Man Cybern. B Cybern. 30(4), 594–601 (2000)

    Article  Google Scholar 

  14. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 1–37 (2012)

    Google Scholar 

  15. Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots. In: Robotics Research, pp. 365–374. Springer, Heidelberg (2005)

    Google Scholar 

  16. Kulpa, R., Multon, F.: Fast inverse kinematics and kinetics solver for human-like figures. In: Proceedings of Humanoids, pp. 38–43 (2005)

    Google Scholar 

  17. Lander, J., CONTENT, G.: Making kine more flexible. Game Developer Mag. 1, 15–22 (1998)

    Google Scholar 

  18. Łukasik, S., Żak, S.: Firefly algorithm for continuous constrained optimization tasks. Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, pp. 97–106. Springer, Heidelberg (2009)

    Google Scholar 

  19. MATLAB Statistics Toolbox User’s Guide (2014). The MathWorks Inc. http:www.mathworks.com/help/pdf_doc/stats/stats.pdf

  20. Mohamad, M.M., Taylor, N.K., Dunnigan, M.W.: Articulated robot motion planning using ant colony optimisation. In: 3rd International IEEE Conference on Intelligent Systems, pp. 690–695 (2006)

    Google Scholar 

  21. Pant, M., Gupta, H., Narayan, G.: Genetic algorithms: a review. In: National conference on frontiers in applied and computational mathematics (FACM-2005), Allied Publishers, p. 225, 04–05 Mar 2005

    Google Scholar 

  22. Pérez-Rodríguez, R., Marcano-Cedeño, A., Costa, Ú., Solana, J., Cáceres, C., Opisso, E., Gómez, E.J.: Inverse kinematics of a 6 DoF human upper limb using ANFIS and ANN for anticipatory actuation in ADL-based physical neurorehabilitation. Expert Syst. Appl. 39(10), 9612–9622 (2012)

    Article  Google Scholar 

  23. Pham, D.T., Castellani, M., and Le Thi, H.A.: Nature-inspired intelligent optimisation using the bees algorithm. In:  Transactions on Computational Intelligence XIII, pp. 38–69. Springer, Heidelberg (2014)

    Google Scholar 

  24. Pollard, N.S., Hodgins, J.K., Riley, M.J., Atkeson, C.G.: Adapting human motion for the control of a humanoid robot. In Proceedings of IEEE International Conference on Robotics and Automation, ICRA’02, vol. 2, pp. 1390–1397 (2002)

    Google Scholar 

  25. Rokbani, N., Alimi, A.M.: Inverse kinematics using particle swarm optimization, a statistical analysis. Procedia Eng. 64, 1602–1611 (2013)

    Article  Google Scholar 

  26. Rokbani, N., Alimi, A.M.: IK-PSO, PSO inverse kinematics solver with application to biped gait generation. Int. J. Comput. Appl. 58(22), 33–39 (2012)

    Google Scholar 

  27. Rokbani, N., Alimi, A.M., Cherif, B.A.: Architectural proposal for an intelligent humanoid. In: Procedings of IEEE Conference on Automation and Logistics (2007)

    Google Scholar 

  28. Rokbani, N., Benbousaada, E., Ammar, B., Alimi, A.M.: Biped robot control using particle swarm optimization. In: IEEE International Conference Systems on Man and Cybernetics (SMC), pp. 506–512 (2010)

    Google Scholar 

  29. Rokbani, N., Boussada, E.B., Cherif, B.A., Alimi, A.M.: From gaits to ROBOT, A Hybrid methodology for A biped Walker. Mobile Robotics: Solutions and Challenges. In: Proceedings of Clawar, vol. 12, pp. 685–692 (2009)

    Google Scholar 

  30. Rokbani, N., Cherif B.A., Alimi, A.M.: Toward intelligent biped-humanoids gaits generation. In: Choi, B. (eds.) Humanoids. Chap 14, InTech (2009)

    Google Scholar 

  31. Rokbani, N., Zaidi, A., Alimi, A.M.: Prototyping a biped robot using an educational robotics kit. In: IEEE International Conference on Education and E-learning Innovations. Sousse, Tunisia (2012)

    Google Scholar 

  32. Rutkowski, L., Przybyl, A., Cpalka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Industr. Electron. 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  33. Schmidt, V., Müller, B., Pott, A. Solving the forward kinematics of cable-driven parallel robots with neural networks and interval arithmetic. In: Computational Kinematics, pp. 103–110. Springer, Netherlands (2014)

    Google Scholar 

  34. Tchoń, K., Jakubiak, J.: Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms. Int. J. Control 76(14), 1387–1419 (2003)

    Article  MATH  Google Scholar 

  35. Tchon, K., Jakubiak, J.: Jacobian inverse kinematics. In: Advances in Robot Kinematics: Mechanisms and Motion, p. 465 (2006)

    Google Scholar 

  36. Tevatia, G., Schaal, S.: Inverse kinematics for humanoid robots. In: Proceedings of IEEE International Conference on Robotics and Automation, (ICRA’00), pp. 294–299 (2000)

    Google Scholar 

  37. Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graph. Models 62(5), 353–388 (2000)

    Article  MATH  Google Scholar 

  38. Van den Bergh, F., Engelbrecht, A.P.: Effects of swarm size on cooperative particle swarm optimizers (2001)

    Google Scholar 

  39. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. In: ACM Transactions on Graphics (TOG), ACM, vol. 28, No. 3, p. 63 (2009)

    Google Scholar 

  40. Xu, Q., Li, Y.: Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization. Robotica 27(1), 67–78 (2009)

    Article  Google Scholar 

  41. Yang, X.S. (2010). Firefly algorithm, Levy flights and global optimization. In: Research and Development in Intelligent Systems XXVI. Springer, London, 209–218

    Google Scholar 

  42. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  43. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications, pp. 169–178, Springer, Heidelberg (2009)

    Google Scholar 

  44. Zaidi, A., Rokbani, N., Alimi, A.M.: A hierarchical fuzzy controller for a biped robot. In: Proceedings of ICBR 2013. Sousse, Tunisia ( 2013)

    Google Scholar 

  45. Zaidi, A., Rokbani, N., Alimi, A.M.: Neuro-Fuzzy gait generator for a biped robot. J. Electron. Syst. 2(2), 48–54 (2012)

    Google Scholar 

  46. Zhang, X,.Nelson, C.A.: Multiple-criteria kinematic optimization for the design of spherical serial mechanisms using genetic algorithms. J. Mech. Des. 133(1) (2011)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support of this work by grants from General Direction of Scientific Research (DGRST), Tunisia, under the ARUB program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Rokbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rokbani, N., Casals, A., Alimi, A.M. (2015). IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm. In: Azar, A., Vaidyanathan, S. (eds) Computational Intelligence Applications in Modeling and Control. Studies in Computational Intelligence, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-11017-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11017-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11016-5

  • Online ISBN: 978-3-319-11017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics