Skip to main content

Abstract

We explore possible applications of the Lattice-Boltzmann Method for the simulation of geophysical flows. This fluid solver, while successful in other fields, is still rarely used for geotechnical applications. We show how the standard method can be modified to represent free-surface realization of mudflows, debris flows, and in general any plastic flow, through the implementation of a Bingham constitutive model. The chapter is completed by an example of a full-scale simulation of a plastic fluid flowing down an inclined channel and depositing on a flat surface. An application is given, where the fluid interacts with a vertical obstacle in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ancey, C.: Plasticity and Geophysical Flows: a Review. J. Nonnewton. Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  4. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press (1970)

    Google Scholar 

  5. Chen, S., Doolen, G.D.: Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  6. Coussot, P.: Mudflow Rheology and Dynamics. A. A. Balkema, Rotterdam (1997)

    MATH  Google Scholar 

  7. Dent, J.D., Lang, T.E.: A Biviscous Modified Bingham Model of Snow Avalanche Motion. Ann. Glaciol., 42–46 (1983)

    Google Scholar 

  8. Hübl, J., Suda, J., Proske, D., Kaitna, R., Scheidl, C.: Debris Flow Impact Estimation. In: Int. Symp. Water Manag. Hydraul. Eng., Ohrid, Macedonia, pp. 137–148 (2009)

    Google Scholar 

  9. Hutter, K., Svendsen, B., Rickenmann, D.: Debris Flow Modeling: a Review. Contin. Mech. Thermodyn. 8, 1–35 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iverson, R.M.: The Physics of Debris Flows. Rev. Geophys. 35, 245–296 (1997)

    Article  Google Scholar 

  11. Iverson, R.M.: The Debris-Flow Rheology Myth. In: Debris Flow Mech. Mitig. Conf., pp. 303–314. Mills, Davos (2003)

    Google Scholar 

  12. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. J. Stat. Phys. 121, 179–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leonardi, A., Wittel, F., Mendoza, M., Herrmann, H.J.: Coupled dem-lbm Method for the Free-Surface Simulation of Heterogeneous Suspensions. Computational Particle Mechanics (submitted, 2014)

    Google Scholar 

  14. Leonardi, C.R., Owen, D.R.J., Feng, Y.T.: Numerical Rheometry of Bulk Materials Using a Power Law Fluid and the Lattice Boltzmann Method. J. Nonnewton. Fluid Mech. 166, 628–638 (2011)

    Article  MATH  Google Scholar 

  15. Li, H., Lu, X., Fang, H., Qian, Y.: Force Evaluations in Lattice Boltzmann Simulations with Moving Boundaries in Two Dimensions. Phys. Rev. E 70, 026,701 (2004)

    Google Scholar 

  16. Mcdougall, S., Hungr, O.: A Model for the Analysis of Rapid Landslide Motion across Three-Dimensional Terrain. Can. Geotech. J. 41, 1084–1097 (2004)

    Article  Google Scholar 

  17. Mendoza, M., Succi, S., Herrmann, H.J.: Flow through Randomly Curved Manifolds. Sci. Rep. 3, 3106 (2013)

    Google Scholar 

  18. Mendoza, M., Wittel, F.K., Herrmann, H.J.: Simulation of Flow of Mixtures through Anisotropic Porous Media Using a Lattice Boltzmann Model. Eur. Phys. J. E. Soft Matter 32, 339–348 (2010)

    Article  Google Scholar 

  19. Mohamad, A.: Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer (2011)

    Google Scholar 

  20. Phillips, C.J., Davies, T.R.: Determining Rheological Parameters of Debris Flow Material. Geomorphology 4, 101–110 (1991)

    Article  Google Scholar 

  21. Savage, S.B., Hutter, K.: The Motion of a Finite Mass of Granular Material down a Rough Incline. J. Fluid Mech. 199, 177 (2006)

    Article  MathSciNet  Google Scholar 

  22. Shan, X., He, X.: Discretization of the Velocity Space in the Solution of the Boltzmann Equation. Phys. Rev. Lett. 80, 65–68 (1998)

    Article  Google Scholar 

  23. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  24. Takahashi, T.: Debris Flow, Mechanics, Prediction and Countermeasures. Taylor & Francis, London (2007)

    Book  Google Scholar 

  25. Švec, O., Skoček, J., Stang, H., Geiker, M.R., Roussel, N.: Free Surface Flow of a Suspension of Rigid Particles in a Non-Newtonian Fluid: a Lattice Boltzmann Approach. J. Nonnewton. Fluid Mech. 179-180, 32–42 (2012)

    Article  Google Scholar 

  26. Whipple, K.X.: Open-Channel Flow of Bingham Fluids: Applications in Debris-Flow Research. J. Geol. 105, 243–262 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Leonardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonardi, A., Wittel, F.K., Mendoza, M., Herrmann, H.J. (2015). Lattice-Boltzmann Method for Geophysical Plastic Flows. In: Wu, W. (eds) Recent Advances in Modeling Landslides and Debris Flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11053-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11053-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11052-3

  • Online ISBN: 978-3-319-11053-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics