Skip to main content

Dictionary Based Super-Resolution for Diffusion MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion magnetic resonance imaging (dMRI) provides unique capabilities for non-invasive mapping of fiber tracts in the brain. It however suffers from relatively low spatial resolution, often leading to partial volume effects. In this paper, we propose to use a super-resolution approach based on dictionary learning for alleviating this problem. Unlike the majority of existing super-resolution algorithms, our proposed solution does not entail acquiring multiple scans from the same subject which renders it practical in clinical settings and applicable to legacy data. Moreover, this approach can be used in conjunction with any diffusion model. Motivated by how functional connectivity (FC) reflects the underlying structural connectivity (SC), we quantitatively validate our results by investigating the consistency between SC and FC before and after super-resolving the data. Based on this scheme, we show that our method outperforms traditional interpolation strategies and the only existing single image super-resolution method for dMRI that is not dependent on a specific diffusion model. Qualitatively, we illustrate that fiber tracts and track-density maps reconstructed from super-resolved dMRI data reveal exquisite details beyond what is achievable with the original data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This dataset is available online at: http://www.nitrc.org/projects/multimodal.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  2. Alexander, A., Hasan, K., Lazar, M., Tsuruda, J., Parker, D.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45(5), 770–780 (2001)

    Article  Google Scholar 

  3. Calamante, F., Tournier, J.D., Jackson, G.D., Connelly, A.: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage 53(4), 1233–1243 (2010)

    Article  Google Scholar 

  4. Coupé, P., Manjón, J.V., Chamberland, M., Descoteaux, M., Hiba, B.: Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013)

    Article  Google Scholar 

  5. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8(8) (2014)

    Google Scholar 

  6. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proc. IEEE 12th International Conference on Computer Vision, pp. 349–356 (2009)

    Google Scholar 

  7. Gupta, V., Ayache, N., Pennec, X.: Improving DTI resolution from a single clinical acquisition: a statistical approach using spatial prior. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI, LNCS, vol. 8151, pp. 477–484. Springer, Heidelberg (2013)

    Google Scholar 

  8. Honey, C., Thivierge, J.P., Sporns, O.: Can structure predict function in the human brain? NeuroImage 52(3), 766–776 (2010)

    Article  Google Scholar 

  9. Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M., Smith, S.: FSL. NeuroImage 62(2), 782–790 (2012)

    Article  Google Scholar 

  10. Landman, B., Huang, A., Gifford, A., Vikram, D., Lim, I., Farrell, J., Bogovic, J., Hua, J., Chen, M., Jarso, S., Smith, S., Joel, S., Mori, S., Pekar, J., Barker, P., Prince, J., van Zijl, P.: Multi-parametric neuroimaging reproducibility: a 3-T resource study. NeuroImage 54(4), 2854–2866 (2011)

    Article  Google Scholar 

  11. Manjón, J.V., Coupé, P., Buades, A., Collins, D.L., Robles, M.: New methods for MRI denoising based on sparseness and self-similarity. Med. Image Anal. 16(1), 18–27 (2012)

    Article  Google Scholar 

  12. Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A supervised clustering approach for fMRI-based inference of brain states. Pattern Recogn. 45(6), 2041–2049 (2012)

    Article  MATH  Google Scholar 

  13. Mori, S., Zhang, J.: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5), 527–539 (2006)

    Article  Google Scholar 

  14. Neher, P., Stieltjes, B., Wolf, I., Meinzer, H., Maier-Hein, K.: Analysis of tractography biases introduced by anisotropic voxels. In: Proc. Annual Meeting ISMRM (2013)

    Google Scholar 

  15. Pati, Y., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proc. Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)

    Google Scholar 

  16. Peled, S., Yeshurun, Y.: Super-resolution in MRI: application to human white matter fiber track visualization by diffusion tensor imaging. Magn. Reson. Med. 45(1), 29–35 (2001)

    Article  Google Scholar 

  17. Poot, D., Jeurissen, B., Bastiaensen, Y., Veraart, J., Van Hecke, W., Parizel, P., Sijbers, J.: Super-resolution for multislice diffusion tensor imaging. Magn. Reson. Med. 69(1), 103–113 (2013)

    Article  Google Scholar 

  18. Scherrer, B., Gholipour, A., Warfield, S.: Super-resolution in diffusion-weighted imaging. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI, LNCS, vol. 6892, pp. 124–132. Springer, Heidelberg (2011)

    Google Scholar 

  19. Skudlarski, P., Jagannathan, K., Calhoun, V., Hampson, M., Skudlarska, B., Pearlson, G.: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage 43(3), 554–561 (2008)

    Article  Google Scholar 

  20. Sotiropoulos, S.N., Jbabdi, S., Andersson, J.L., Woolrich, M.W., Ugurbil, K., Behrens, T.E.J.: RubiX: combining spatial resolutions for Bayesian inference of crossing fibers in diffusion MRI. IEEE Trans. Med. Imaging 32(6), 969–982 (2013)

    Article  Google Scholar 

  21. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  23. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.L., Schumaker, L. (eds.) Curves and Surfaces, LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Pierrick Coupé for assisting in the comparative assessment of our method with CLASR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Yoldemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yoldemir, B., Bajammal, M., Abugharbieh, R. (2014). Dictionary Based Super-Resolution for Diffusion MRI. In: O'Donnell, L., Nedjati-Gilani, G., Rathi, Y., Reisert, M., Schneider, T. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-11182-7_18

Download citation

Publish with us

Policies and ethics