Skip to main content

Role of Lipid-Mediated Effects in β2-Adrenergic Receptor Dimerization

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Abstract

G protein-coupled receptors (GPCRs) are an important family of mammalian membrane proteins whose function has been shown to be modulated by membrane lipid composition. The β2-adrenergic receptor is one of the most well characterized GPCRs. Structural characterization of the β2-adrenergic receptor and other related receptors has revealed putative lipid binding sites. In addition, indirect lipid effects, such as hydrophobic mismatch, have also been implicated in receptor function and organization. Despite these advances in understanding the receptor in the membrane environment, our understanding of the protein-lipid interactions remains limited. Here, we have used MARTINI coarse-grain molecular dynamics simulations to explore receptor-lipid interactions of the β2-adrenergic receptor. We analyze the indirect membrane effects such as hydrophobic mismatch and correlate its role in driving receptor association. We also study direct receptor-lipid interactions and identify a novel lipid binding site. The sites of increased receptor-lipid interactions, could play an important role in modulating receptor association. Our results provide novel insights into the correlation between direct and indirect lipid effects with GPCR organization. We believe these results constitute an important step in understanding GPCR organization and dynamics in the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves ID, Salamon Z, Hruby VJ, Tollin G (2005) Ligand modulation of lateral segregation of a G-Protein-Coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry 44:9168–9178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97:3684–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Botelho VA, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    CAS  PubMed  Google Scholar 

  • Calebiroa D, Riekena F, Wagner J, Sungkaworna T, Zabela U, Borzid A, Cocuccie E, Zürna A, Lohse MJ (2012) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748

    Google Scholar 

  • Cang X, Du Y, Mao Y, Wang Y, Yang H, Jiang H (2013) Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. J Phys Chem B 117:1085–1094

    CAS  PubMed  Google Scholar 

  • Castillo N, Monticelli L, Barnoud J, Tieleman DP (2013) Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers. Chem Phys Lip 169:95–105

    CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-Resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chien EYT, Liu W, Zhao Q, Katritch V, Won Han G, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dror RO, Arlow DH, Borhani DW, Jensen MA, Piana S, Shaw DE (2009) Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci U S A 106:4689–4694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly S, Clayton AH, Chattopadhyay A (2011) Organization of higher-order oligomers of the serotonin1A receptor explored utilizing homo-FRET in live cells. Biophys J 100:361–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson NJ, Brown MF (1993) Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–2454

    CAS  PubMed  Google Scholar 

  • Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the d-opioid receptor bound to naltrindole. Nature 485:400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossfield A, Feller SE, Pitman MC (2006) A role for direct interactions in the modulation of rhodopsin by w-3 polyunsaturated lipids. Proc Natl Acad Sci U S A 103:4888–4893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossfield A, Pitman MC, Feller SE, Soubias O, Gawrisch K (2008) Internal hydration increases during activation of the G-protein-coupled receptor Rhodopsin. J Mol Biol 381:478–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hébert TE, Moffett S, Morello J-P, Loisel TP, Bichet DG, Barret C, Bouvier M (1996) A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392

    PubMed  Google Scholar 

  • Heilker R, Wolff M, Tautermann CS, Bieler M (2009) G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240

    CAS  PubMed  Google Scholar 

  • Huang J, Chen S, Zhang JJ, Huang X-Y (2013) Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  • Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, IJzerman AP, Stevens RC (2008) The 2.6 Å crystal structure of a human A2A-adenosine receptor bound to an antagonist. Science 322:1211–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the relative stability of dimer interfaces in G protein-coupled receptors. PLoS Comput Biol 8:e1002649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai R, Suzuki K, Prossnitz E, Koyama-Honda I, Nakada C, Fujiwara T, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33:17–27

    CAS  PubMed  Google Scholar 

  • Lagerstroem MC, Schioeth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    CAS  Google Scholar 

  • Lee JY, Lyman E (2012) Predictions for cholesterol interaction sites on the A2A Adenosine receptor. J Am Chem Soc 134:16512–16515

    CAS  PubMed  Google Scholar 

  • Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyman E, Higgs C, Kim B, Lupyan D, Shelley JC, Farid R, Voth GA (2009) A Role for a specific cholesterol interaction in stabilizing the Apo configuration of the Human A2A- Adenosine Receptor. Structure 17:1660–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI forcefield: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    CAS  PubMed  Google Scholar 

  • Mondal S, Johnston JM, Wang H, Khelashvili G, Filizol M, Weinstein H (2009) Membrane driven spatial organization of GPCRs. Sci Rep 3:2909

    Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse grained forcefield: extension to proteins. J Chem Theory Comput 4:819–834

    CAS  PubMed  Google Scholar 

  • Nezil F, Bloom M (1992) Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys J 61:1176–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oates J, Watts A (2011) Uncovering the intimate relationship between lipids cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807

    CAS  PubMed  Google Scholar 

  • Paila Y, Chattopadhyay A (2009) The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J 26:711–720

    CAS  PubMed  Google Scholar 

  • Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2011a) Oligomerization of the serotonin1A receptor in live cells: A time-resolved fluorescence anisotropy approach. J Phys Chem B 115:11439–11447

    CAS  PubMed  Google Scholar 

  • Paila YD, Jindal E, Goswami SK, Chattopadhyay A (2011b) Cholesterol depletion enhances adrenergic signalling in cardiac myocytes. Biochim Biophys Acta 1808:461–465

    CAS  PubMed  Google Scholar 

  • Periole X, Huber T, Marrink S-J, Sakmar TP (2007) G Protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132

    CAS  PubMed  Google Scholar 

  • Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134:10959–10965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    CAS  PubMed  Google Scholar 

  • Prasanna X, Praveen PJ, Sengupta D (2013) Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants. J Phys Chem B 15:19031–19041

    CAS  Google Scholar 

  • Prasanna X, Chattopadhyay A, Sengupta D (2014) Cholesterol modulates the dimer interface of the β2-Adrenergic receptor via cholesterol occupancy sites. Biophys J 106:1290–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

    CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol depletion induces dynamic confinement of the G protein-coupled serotonin1A receptor in the plasma membrane of living cells. Biochim Biophys Acta 1768:655–668

    CAS  PubMed  Google Scholar 

  • Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human β2-adrenergic G protein-coupled receptor. Nature 450:383–387

    CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Yao X-J, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273

    CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G protein-coupled receptors. Nature 459:356–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena R, Chattopadhyay A (2011) A Membrane organization and dynamics of the serotonin1A receptor in live cells. J Neurochem 116:726–733

    CAS  PubMed  Google Scholar 

  • Saxena R, Chattopadhyay A (2012) Membrane cholesterol stabilizes the human serotonin1A Receptor. Biochim Biophys Acta 1818:2936–2942

    CAS  PubMed  Google Scholar 

  • Schäfer LV, de Jong DH, Holt A, Rzepiela AJ, de Vries AH, Poolman B, Killian JA, Marrink SJ (2011) Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci U S A 108:1343–1348

    PubMed  PubMed Central  Google Scholar 

  • Sengupta D (2012a) Chattopadhyay A (2012) Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B 116:12991–12996

    CAS  PubMed  Google Scholar 

  • Sengupta D (2012b) Cholesterol modulates the structure binding modes and energetics of caveolin-1 membrane interactions. J Phys Chem B 116:14556–14564

    CAS  PubMed  Google Scholar 

  • Sengupta D, Marrink SJ (2010) Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. Phys Chem Chem Phys 12:12987–12996

    CAS  PubMed  Google Scholar 

  • Sengupta D, Rampioni A, Marrink SJ (2009) Simulations of the c-subunit of ATPsynthase reveal helix rearrangements. Mol Membr Biol 26:422–434

    PubMed  Google Scholar 

  • Soubias O, Gawrisch K (2012) The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta 1818:234–240

    CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26:1701–1718

    Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    CAS  PubMed  Google Scholar 

  • Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, Sunahara RKA (2007) Monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z-G, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A-adenosine receptor. Science 332:322–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Kobilka B (2005) Using synthetic lipids to stabilize purified β2-adrenergic receptor in detergent micelles. Anal Biochem 343:344–346

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research, Govt. of India. D.S. gratefully acknowledges the support of the Ramalingaswami Fellowship from the Department of Biotechnology, Govt. of India. X.P. thanks the University Grants Commission (India) for the award of a Junior Research Fellowship. A.C. gratefully acknowledges J.C. Bose Fellowship (Department of Science and Technology, Govt. of India). A.C. is an Adjunct Professor at the Special Centre for Molecular Medicine of Jawaharlal Nehru University (New Delhi) and Indian Institute of Science Education and Research (Mohali), and Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore). We acknowledge the CSIR Fourth Paradigm Institute (Bangalore) and the Multi-Scale Simulation and Modeling project - MSM (CSC0129) for computational time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amitabha Chattopadhyay or Durba Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Prasanna, X., Chattopadhyay, A., Sengupta, D. (2015). Role of Lipid-Mediated Effects in β2-Adrenergic Receptor Dimerization. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_16

Download citation

Publish with us

Policies and ethics