Skip to main content

Reversing Borcherds Lifts: A Survey

  • Conference paper
  • First Online:
Automorphic Forms

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 115))

  • 846 Accesses

Abstract

This is a survey on our results towards the reversing of the multiplicative theta lift of Borcherds. First results on this topic had been obtained by Bruinier, proving that meromorphic automorphic forms F on the orthogonal group G = O(2, n + 2) with special divisor are Borcherds lifts. Holomorphic automorphic forms on G are Borcherds lifts if and only if they have a certain symmetry property. This leads to several applications. Special divisors (linear combinations of Heegner divisors) can be characterized by a symmetry property among all effective principal divisors. This gives a new proof and a generalization of parts of Bruinier’s result. We obtain recursion formulas for the Fourier-Jacobi coefficients of a Borcherds lift. Hence we have a direct link between Fourier-Jacobi coefficients and divisors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Allcock, E. Freitag, Cubic surfaces and Borcherds products, Comment. Math. Helv. 77, 270–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Aoki, T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Int. J. Math. 16, 249–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Barnard, The singular theta correspondence, lorentzian lattices and Borcherds-Kac-Moody algebras. Ph.D. Dissertation, U.C. Berkley (2003). arXiv:math/0307102v1 [math.GR]

    Google Scholar 

  4. R.E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. R.E. Borcherds, Automorphic forms on \(O_{s+2,2}(\mathbb{R})\) and infinite products, Invent. Math. 120. 161–213 (1995)

    Google Scholar 

  6. R.E. Borcherds, The moduli space of Enriques surfaces and the fake monster Lie superalgebra. Topology 35, 699–710 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. R.E. Borcherds, Automorphic forms with singularities on grassmannians. Invent. Math. 132, 491–562 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. R.E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97, 219–233 (1999) Correction to “The Gross-Kohnen-Zagier theorem in higher dimensions”. Duke Math. J. 105, 183–184 (2000)

    Google Scholar 

  9. J.H. Bruinier, E. Freitag, Local Borcherds products. Ann. I. Fourier 51.1, 1–26 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. J.H. Bruinier, in Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors, Lecture Notes in Mathematics, vol. 1780 (Springer, New York, 2002)

    Google Scholar 

  11. J.H. Bruinier, J.I. Burgos Gil, U.Kühn, Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Duke Math. J. 139, 1–88 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. J.H. Bruinier, J. Funke, On the injectivity of the Kudla-Milson lift and surjectivity of the Borcherds lift, in Moonshine: The First Quarter Century and Beyond, ed. by J. Lepowski, J. McKay, M. Tuite (Cambridge University Press, Cambridge, 2010), pp. 12–39

    Google Scholar 

  13. J.H. Bruinier, On the converse theorem for Borcherds products. arXiv:1210.4821v1 [math.NT] 17 Oct 2012

    Google Scholar 

  14. M. Cheng, A. Dabholkar, Borcherds-Kac-Moody symmetry of \(\mathcal{N} = 4\) dyons. Comm. Num. Theory Phys. 3(1), 59–110 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Dabholkar, S. Murthy, D. Zagier, Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074v1 [hep-th] 20 Aug (2012)

    Google Scholar 

  16. T. Dern, A. Krieg, Graded rings of Hermitian modular forms of degree 2. Manuscripta Math. 110, 251–272 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Dijkgraff, E. Verlinde, H. Verlinde, Counting dyons in N = 4 string theory. Nucl. Phys. B. 484, 543–561 (1997)

    Article  Google Scholar 

  18. M. Eichler, D. Zagier, in Theory of Jacobi Forms, Progress in Mathematics, vol. 55, (Birkhäuser, Boston, 1985)

    Google Scholar 

  19. E. Freitag, R. Salvati Manni, Modular forms for the even modular lattice of signature (2, 10). J. Algebraic Geom. 16, 753–791 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. V.A. Gritsenko, V.V. Nikulin, Igusa modular forms and ‘the simplest’ Lorentzian Kac-Moody algebras. Sb. Math. 187(11), 1601–1641 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. V.A. Gritsenko, V.V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. Part II. Int. J. Math. 9, 201–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Guerzhoy, On the hecke equivariance of the borcherds isomorphism. Bull. London Math. Soc. 38, 93–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Harvey, G. Moore, Algebras, BPS states, and strings. Nucl. Phys. B 463, 315–368 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Heim, A. Murase, Symmetries for the Siegel theta functions, Borcherds lifts and automorphic Green functions. J. Number Theory 133(10), 3485–3499. arXiv: 1003.2248

    Google Scholar 

  25. S. Kondo, The moduli space of Enriques surfaces and the Borcherds products. J. Algebraic Geom. 11, 601–627 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Kontsevich, Product formulas for modular forms on O(2, n). Séminaire Bourbaki, Vol. 1996/97. Astérisque No. 245, Exp. No. 821(3), 41–56 (1997)

    Google Scholar 

  27. N. Scheithauer, On the classification of automorphic products and generalized Kac-Moody algebras. Invent. math. 164, 641–678 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Scheithauer, in Develompments and Trends in Infinite-Dimensional Lie Theory, ed. by K.-H. Neeb, A. Pianzola. Lie Algebras, Vertex Algebras, and Automorphic Forms. Progess in Mathematics, vol. 288 (Brikhauser, Boston, 2011), pp. 151–168

    Google Scholar 

Download references

Acknowledgement

The authors thank the referee for sharpening the structure of the survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Heim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Heim, B., Murase, A. (2014). Reversing Borcherds Lifts: A Survey. In: Heim, B., Al-Baali, M., Ibukiyama, T., Rupp, F. (eds) Automorphic Forms. Springer Proceedings in Mathematics & Statistics, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-11352-4_7

Download citation

Publish with us

Policies and ethics