Skip to main content

Abstract

Thus, we come to the end of this book. At this point, we can take the liberty of digressing from strict scientific treatment of phenomena and give a broad picture of the history and reasons for writing this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Hager A (1957) Über den Einfluß klimatischer Faktoren auf den Blattfarbstoffgehalt höherer Pflanzen. Planta 49:524–560

    Article  CAS  Google Scholar 

  • Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktionen. Ber Dtsch Bot Ges 79:94–107

    CAS  Google Scholar 

  • Hager A (1967a) Untersuchungen über die lichtinduzierten Xanthophyllumwandlungen an Chlorella und Spinacia. Planta 74:148–173

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1967b) Untersuchungen über die Rückreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin - Zeaxanthin Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwandlungen in Chloroplasten. Ber Dtsch Bot Ges 88:27–44

    CAS  Google Scholar 

  • Hager A (1980) The reversible, light-induced conversions of xanthophylls in chloroplast. In: Czygan FC (ed) Pigments in plants. G. Fischer, Stuttgart, pp 57–79

    Google Scholar 

  • Hager A, Perz H (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym (De-epoxidation)-Substrat (Violaxanthin)-Komplex. Planta 93:314–322

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Stransky H (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:68–83

    Article  Google Scholar 

  • Hager A, Stransky H (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. I. Arch Mikrobiol 71:132–163

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Stransky H (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. II. Arch Mikrobiol 73(N1):S77–S89

    Article  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one machanism. Proc Natl Acad Sci U S A 96:8762–8767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krinsky NI (1962) Light-induced changes in carotenoid pigments in Euglena gracilis. Fed Proc 21:92–95

    Google Scholar 

  • Krinsky NI (1964) Carotenoid de-epoxidation in algae. Photochemical transformation of antheraxanthin to zeaxanthin. Biochim Biophys Acta 88:487–491

    CAS  PubMed  Google Scholar 

  • Krinsky NI (1966) The role of carotenoid pigments as protective agents in chloroplasts. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 1. Academic, London, pp 423–430

    Google Scholar 

  • Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195

    Chapter  Google Scholar 

  • Krinsky NI (1971) Function. In: Isler O (ed) Carotenoids. Birkhauser, Basel, pp 669–716

    Chapter  Google Scholar 

  • Krinsky NI, Goldsmith TH (1960) The carotinoids of flagellated alga, Euglena gracilis. Arch Biochem Biophys 91:271–279

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Burda K, Strzalka K (2000) A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophylls cycle enzyme violaxanthin de-epoxidase. J Theor Biol 206:507–514

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M et al (2002) Kinetics of violaxanthin de-epoxidation by de-epoxidase, a xanthophylls cycle enzyme is regulated by membrane fluidity in model lipid bilayers. FEBS J 209(18):4656–4665

    Article  Google Scholar 

  • Melua AI (1999) Siege of Leningrad. Encyclopaedia. “Humanistica” Science Biographic Encyclopaedic Publishing House, Moscow, 672 p

    Google Scholar 

  • Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303

    Article  CAS  PubMed  Google Scholar 

  • Moster JB, Quackenbush FW (1952b) The effects of temperature and light on corn seedlings. Arch Biochem Biophys 38:297–303

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997a) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997b) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Shih C, Pogson RJ, Dellapena D, Bjorkman O (2001) Photoprotection in zeaxanthin and lutein-deficient double mutant Arabidopsis. Photosynth Res 67:139–145

    Article  CAS  PubMed  Google Scholar 

  • Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev EV, Knyazev MN (2013) Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. Springer, Heidelberg, 357 p

    Book  Google Scholar 

  • Talsky G (1994) Derivative spectrophotometry: low and higher order. VCH Verlaggesellschaft GmbH, Weinheim, 228p

    Book  Google Scholar 

  • Yamamoto HY, Chang JL, Aihara MS (1967) Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim Biophys Acta 141:342–347

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO, Nakayama TOM (1962a) Biosynthetic origin of origin in the leaf xanthophylls. Arch Biochem Biophys 96(3):645–649

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO, Nakayama TOM (1962b) Xanthophylls and Hill reaction. Photochem Photobiol 1:53–57

    Article  CAS  Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962c) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saakov, V.S., Krivchenko, A.I., Rozengart, E.V., Danilova, I.G. (2015). Conclusion. In: Derivative Spectrophotometry and PAM-Fluorescence in Comparative Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-11596-2_6

Download citation

Publish with us

Policies and ethics