Skip to main content

Insect Pest Management in Conservation Agriculture

  • Chapter
  • First Online:
Conservation Agriculture

Abstract

Insects are a dominant form of life on Earth with more than 1 million described species. Yet, only 1% competes with humans for food, shelter, and space. Various farming systems have been adopted for sustainable pest management but none have been entirely successful in managing insect pests. Chemical insecticides are still the predominant pest control measure but cause health hazard and environmental pollution. The long-term sustainability of agricultural and natural ecosystems depends upon the conservation of natural resources. Conservation agriculture (CA) is a novel approach with a series of practices that strives for acceptable profits together with high and sustained production levels while concurrently conserving the environment. It also increases biodiversity of both flora and fauna which helps to control insect pests, contradictory reports incite concerns regarding reduced yields, increased labor requirements due to avoiding herbicides, and insect pest problems. It is therefore necessary to integrate alternative cultural, biological, mechanical, and appropriate chemical and biotechnological control methods for pest management. The principle of integrated pest management (IPM) creates a balanced environment between sustainable environmental practices and profitable farming. Both IPM and CA work on the same principles to help increase biodiversity and conservation of natural resources. In addition, recent advances in insect pest management like biointensive IPM, precision agriculture (PA) and biotechnology can also synergize the insect pest management in the CA management system. Sustainable pest management for crop production is possible in CA management systems by using IPM in combination with biotechnology and PA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford AR, Murray KD (2000) Prospects for citrus limonoids in insect pest management. ACS Symp series 758(178):201–211

    Google Scholar 

  • Altieri M, Nicholls C (2004) Biodiversity and pest management in agroecosystems. Food Products Press, New York

    Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262(3):263–286

    Article  CAS  PubMed  Google Scholar 

  • Baloch G (1974) Phytophagous organisms associated with bindweeds, Convolvulus spp. in Pakistan. Tech Bull, Commonwealth Inst Biol Control 1976(17):29–36

    Google Scholar 

  • Barbosa PA (1998) Conservation biological control. Academic, San Diego

    Google Scholar 

  • Basso B (2003) Perspectives of precision agriculture in conservation agriculture. In: Luis GT, José B, Armando MV, Antonio HC (eds) Conservation agriculture. Springer, Netherlands, pp 281–288

    Google Scholar 

  • Bautista MAM, Miyata T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Bell WJ (1990) Searching behavior patterns in insects. Ann Rev Entomol 35(1):447–467

    Article  Google Scholar 

  • Bengtsson J, Ahnström J (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Appl Ecol 42(2):261–269

    Article  Google Scholar 

  • Bot A, Benites J (2001) Conservation agriculture: case studies in Latin America and Africa. FAO Soil Bulletin #78. Rome, Italy.

    Google Scholar 

  • Caltagirone L, Doutt R (1989) The history of the vedalia beetle importation to California and its impact on the development of biological control. Ann Rev Entomol 34(1):1–16

    Article  Google Scholar 

  • Carin J, Karl-Heinz K (2007) Insect antimicrobial peptides as new weapons against plant pathogens. In: Vilcinskas A (ed) Insect biotechnology. Springer, Dordrecht

    Google Scholar 

  • Champagne DE, Koul O (1992) Biological activity of limonoids from the Rutales. Phytochem 31(2):377–394

    Article  CAS  Google Scholar 

  • Clausen CP (1940) Entomophagous insects. McGraw-Hill, New York, p 668

    Google Scholar 

  • Cook RJ (2006) Toward cropping systems that enhance productivity and sustainability. Proc Natl Acad Sci 103(49):18389–18394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cory JS, Evans HF (2007) Viruses. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Netherlands, pp 149–174

    Chapter  Google Scholar 

  • Derpsch R, Friedrich T (2009) Global overview of conservation agriculture no-till adoption. 4th World Congress on Conservation Agriculture, New Delhi, India

    Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique, principles and practice in area-wide integrated pest management. Springer, Dordrecht

    Google Scholar 

  • Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philos Trans R Soc London B Biol Sci 337(1279):1–20

    Article  Google Scholar 

  • Evans HC (2002) Biological control of weeds. In: Kemp-ken D (ed) The Mycota XI: agricultural applicatons. Springer, Berlin, pp 135–152

    Google Scholar 

  • FAO (2006) Conservation Agriculture; Agriculture and Consumer Protection Department. Rome, Italy. http://www.fao.org/ag/magazine/0110sp.htm

  • FAO (2012) Agriculture growth programm (AGP)—Integrated Pest Management. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/ipm/en/

  • Frost SW (1959) Insect life and insect natural history, 2nd edn. Dover, New York

    Google Scholar 

  • Fuller R, Norton L (2005) Benefits of organic farming to biodiversity vary among taxa. Biol Lett 1(4):431–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garczynski SF, Siegel JP (2007) Bacteria. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Netherlands, pp 175–197

    Chapter  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146(3):881–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavlak RG, Horneck DA, Miller RO (1994) Plant soil and water reference methods for the western region. Univ. of Alaska, Fairbank. WREP 125

    Google Scholar 

  • Gehring CA, Cobb NS (1997) Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Am Nat 149(5):824–841

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Witter E (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114(1):23–34

    Article  Google Scholar 

  • Gillon AD, Saska I (2008) Biosynthesis of circular proteins in plants. The Plant J 53(3):505–515

    Article  CAS  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University, New Jersey

    Google Scholar 

  • Goeden R, Andres L (1999) Biological control of weeds in terrestrial and aquatic environments. In: Bellows TS, Fisher TW, Caltagirone LE, Dahlsten DL, Gordh G, Huffaker CB (eds) Handbook of Biological Control. Academic, London, pp 871–890

    Chapter  Google Scholar 

  • Gold MV (1999) Sustainable agriculture: definitions and terms. Special Reference Briefs Series No. SRB 99-02. National Agricultural Library. http://warp.nal.usda.gov/afsic/AFSIC_pubs/srb9902.htm [Geo −2-181]

  • Gratton C, Denno RF (2003) Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecologia 134(4):487–495

    PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge. ISBN 0-521-82149–5

    Google Scholar 

  • Gupta S, Dikshit A (2010) Biopesticides: an eco-friendly approach for pest control. J Biopes 3(1):186–188

    Google Scholar 

  • Gurr GM, Wratten SD (2012) Biodiversity and insect pests: key issues for sustainable management. Wiley, Oxford, pp 347

    Book  Google Scholar 

  • Harford N, Breton JL (2009) Farming for the future, a guide to conservation agriculture in Zimbabwe. Zimbabwe Conservation Agriculture Task Force

    Google Scholar 

  • Harrington R, Bale JS, Tatchell GM (1995) Aphids in a changing climate. Insects in a changing environment. In: Harrington R, Stork NE (eds) Insect in a changing environment. Academic, London, pp 125–155.

    Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101(41):14812–14817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heege HJ, Reusch S, Thiessen E (2008) Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agric 9(3):115–131

    Article  Google Scholar 

  • Henneberry T (2007) Integrated systems for control of the pink bollworm Pectinophora gossypiella in cotton. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Netherlands, pp 567–579

    Chapter  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc B Biol Sci 363(1491):543–555

    Article  Google Scholar 

  • Hole D, Perkins A (2005) Does organic farming benefit biodiversity? Biol Cons 122(1):113–130

    Article  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Jaipal S, Singh S, Yadav A, Malik RK, Hobbs PR (2002) Species diversity and population density of macro-fauna of rice-wheat cropping habitat in semi-arid subtropical northwest India in relation to modified tillage practices of wheat sowing. Herbicide-resistance management and zero-tillage in the rice-wheat cropping system. Proceedings of International Workshop, Hissar, India

    Google Scholar 

  • James C (2008) Global status of commercialized Biotech/GM crops 2008. The International Service for the Acquisition of Agri-biotech Applications, ISAAA, Ithaca, NY

    Google Scholar 

  • Jennings CV, Rosengren KJ, Daly NL, Plan M, Stevens J, Scanlon MJ, Waine C, Norman DG, Anderson MA, Craik DJ (2005) Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do Möbius strips exist in nature? Biochem 44(3):851–860

    Article  CAS  Google Scholar 

  • Jhon R, Maria Z (2001) Agricultural biotechnology for developing countries—results of an electronic forum. FAO, Rome

    Google Scholar 

  • Jordan VWL, Leake AR, Ogilvy S, Cook SK, Cormack WF, Green M, Holland JM Welsh JP (2000) Agronomic and environmental implications of soil management practices in integrated farming systems. Asp Appl Biol (62):61–66

    Google Scholar 

  • Kendall DA, Chinn NE, Glen DM, Wiltshire CW, Winstone L, Tidboald C (1995) Effects of soil management on cereal pests and their natural enemies. In: Glen DM, Greaves MP, Anderson HH (eds) Ecology and integrated farming systems. Wiley, Chichester, pp 83–102

    Google Scholar 

  • Khan SA, Zafar Y, Briddon RW, Malik KA, Mukhtar Z (2006) Spider venom toxin protects plants from insect attack. Transgenic Res 15:349–357

    Article  CAS  PubMed  Google Scholar 

  • Killiny NA, Rashed Almeida RPP (2012) Disrupting of the transmission of a vector-borne plant pathogen. Appl Environ Microbiol 78:638–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61(1):61–76

    Article  Google Scholar 

  • Klassen W, Curtis C (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Springer, Dordrecht, pp 3–36

    Google Scholar 

  • Koul O (2005) Insect antifeedants. CRC Press, Bota Raton

    Google Scholar 

  • Koul O, Kaur H, Goomber S, Wahab S (2004) Bioefficacy and mode of action of rocaglamide from Aglaia elaeagnoidea (syn. A. roxburghiana) against gram pod borer, Helicoverpa armigera (Hübner). Appl Entomol 128(3):177–181

    Article  CAS  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci 99(26):16812–16816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuldna P, Peterson K, Poltimäe H, Luig J (2009) An application of DPSIR framework to identify issues of pollinator loss. Ecol Econom 69(1):32–42

    Article  Google Scholar 

  • Kumar MG, Gorakh PR, Manchikatla V (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. Insect Physiol 55(3):273–278

    Article  CAS  Google Scholar 

  • Lacey LA, Kaya HK (2007) Field manual of techniques in invertebrate pathology, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Leius K (1967) Influence of wild flowers on parasitism of tent caterpillar and codling moth. Can Entomol 99(04):444–446

    Article  Google Scholar 

  • Lovei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Ann Rev Entomol 41(1):231–256

    Article  CAS  Google Scholar 

  • Mahr DL, Whitaker P, Ridgway NM (2008) Biological control of insects and mites: an introduction to beneficial natural enemies and their use in pest management. University of Wisconsin Cooperative Extension, No A3842

    Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301

    Article  CAS  PubMed  Google Scholar 

  • Mason J (2003) Sustainable agriculture, 2nd edn. Landlinks Press, Collingwood.

    Google Scholar 

  • McKinney ML (1999) High rates of extinction and threat in poorly studied taxa Conserv Biol 13(6):1273–1281

    Article  Google Scholar 

  • Miller JC (1993) Insect natural history, multi-species interactions and biodiversity in ecosystems. Biodiv Conserv 2(3):233–241

    Article  Google Scholar 

  • Miyakado M, Nakayama I, Ohno N (1989) Insecticidal unsaturated isobutylamides. From natural products to agrochemical leads. In: Arnason JT, Philogène BJR, Morand P (eds) Insecticide and plant origin. ACS Symposium series 387, Washington, pp 173–187

    Google Scholar 

  • Mulla DJ, Schepers JS, Pierce FJ, Sadler EJ (1997) Key processes and properties for site-specific soil and crop management. In: Pierce FJ, Sadler EJ (eds) The state of site specific management for agriculture. American Society of Agronomy, Madison, pp 1–18

    Google Scholar 

  • Musick GJ, Collins DL (1971) Northern corn rootworm affected by tillage, Ohio report on research and development in agriculture, Home Econ Natl Resour 56(4): 88–91

    Google Scholar 

  • Nawaz A, Razpotnik A, Rouimi P, de Sousa G, Cravedi JP, Rahmani R (2013) Cellular impact of combinations of endosulfan, atrazine and chlorpyrifos on human primary hepatocytes and HepaRG cells after short and chronic exposure. Cell Biol Toxicol 30(1):17–29

    Article  PubMed  Google Scholar 

  • Nilsson C (1985) Impact of ploughing on emergence of pollen beetle parasitoids after hibernation. Appl Entomol 100(1-5):302–308

    Google Scholar 

  • Nunes FMF, Simões ZLP (2009) A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem Mol Biol 39(2):157–160

    Article  CAS  PubMed  Google Scholar 

  • Obrycki JJ, Kring TJ (1998) Predaceous coccinellidae in biological control. Ann Rev Entomol 43(1):295–321

    Article  CAS  Google Scholar 

  • Olembo R, Hawksworth D (1991) Importance of microorganisms and invertebrates as components of biodiversity. Biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. In: Proceedings of the First Workshop on the Ecological Foundations of Sustainable Agriculture (WEFSA 1), CAB International, London, UK, 26–27 July 1990

    Google Scholar 

  • Onstad DW, Fuxa JR, Humber RA, Oestergaard J, Shapiro-Ilan DI, Gouli VV, Anderson RS, Andreadis TG, Lacey LA (2006) An abridged glossary of terms used in invertebrate pathology, 3rd edn. Society for Invertebrate Pathology. http://www.sipweb.org/glossary. Accessed 23 Jun 2014

  • O’Rourke ME, Liebman M, Rice ME (2008) Ground beetle (Coleoptera: Carabidae) assemblages in conventional and diversified crop rotation systems. Environ Entomol Feb 37(1):121–130

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Pedigo LP, Rice ME (2009) Entomology and pest management, 6th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Pierce FJ, Nowak P (1999) Aspects of precision agriculture. Adv Agron 87:1–85

    Google Scholar 

  • Pimentel D (1997) Techniques for reducing pesticide use: economic and environmental benefits. Wiley, Chichester. ISBN: 978-0-471-96838–2

    Google Scholar 

  • Pimentel D (2008) Preface special issue: conservation biological control. Biol Control 45(2):171

    Article  Google Scholar 

  • Proksch P, Edrada R, Ebel R, Bohnenstengel FI Nugroho BW (2001) Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr Org Chem 5(9):923–938

    Article  CAS  Google Scholar 

  • Quicke DL (1997) Parasitic wasps. Chapman & Hall, London

    Google Scholar 

  • Reddy PP (2013) Biointensive integrated pest management. In: Recent advances in crop protection. Springer, New York, pp 223–244

    Book  Google Scholar 

  • Rogers CE (1991) Arthropod biological control agents and pesticides. Environ Entomol 20(5):1492–1492

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  CAS  PubMed  Google Scholar 

  • Samways MJ (2007) Insect conservation: a synthetic management approach. Annu Rev Entomol 52:465–487

    Article  CAS  PubMed  Google Scholar 

  • Scott IM, Jensen H, Nicol R, Lesage L, Bradbury R, Sanchez-Vindas P, Poveda L, Arnason JT Philogène BJR (2004) Efficacy of Piper (Piperaceae) extracts for control of common home and garden insect pests. Econ Entomol 97(4):1390–1403

    Article  CAS  Google Scholar 

  • Scott IM, Jensen HR, Philogène BJR Arnason JT (2008) A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem Rev 7(1):65–75

    Article  CAS  Google Scholar 

  • Scudder GGE (2009) The importance of insects. In: Foottit R, Adler P (eds). Insect biodiversity science and society, pp 7–32. Wiley, Chichester

    Chapter  Google Scholar 

  • Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Shapiro-Ilan D, Gouge D (2002) Factors affecting commercial success: case studies in cotton, turf and citrus. In: Entomopathogenic nematology, pp 333–356. CAB International, New York

    Book  Google Scholar 

  • Singh R, Koul O, Rup PJ, Jindal J (2011) Oviposition and feeding behavior of the maize borer, Chilo partellus, in response to eight essential oil allelochemicals. Entomol Exp Appl 138(1):55–64

    Article  CAS  Google Scholar 

  • Stinner BR, House G (1990) Arthropods and other invertebrates in conservation-tillage agriculture. Ann Rev Entomol 35(1):299–318

    Article  Google Scholar 

  • Swift M, Anderson J (1989) Decomposition. In: Lieth H, Werger MJA (eds) Tropical rain forest ecosystems. Biogeographical ecological studies. Elsevier, Amsterdam, pp 547–569

    Chapter  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26(2):199–202

    Article  CAS  PubMed  Google Scholar 

  • Tedford HW, Sollod BL, Maggio F, King GF (2004) Australian funnel-web spiders: master insecticide chemists. Toxicon 43:601–618

    Article  CAS  PubMed  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285(5429):893–895

    Article  CAS  PubMed  Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. Appl Ecol 41(3):526–538

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

    Article  CAS  PubMed  Google Scholar 

  • Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol 6(2):191–198

    Article  PubMed  Google Scholar 

  • Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578

    Article  CAS  PubMed  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • Van Driesche R, Hoddle M (2009) Control of pests and weeds by natural enemies. In: An introduction to biological control. Wiley, Oxford

    Google Scholar 

  • Van Emden HF, Peakall DB (1996) Beyond silent spring: integrated pest management and chemical safety. Chapman & Hall, London

    Book  Google Scholar 

  • Vandermeer J (1995) The ecological basis of alternative agriculture. Annu Rev Ecol Syst 26(1):201–224

    Article  Google Scholar 

  • Vreysen M (2000) Principles of area-wide integrated tsetse fly control using the sterile insect technique. Med Trop (Mars) 61(4-5):397–411

    Google Scholar 

  • Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  CAS  PubMed  Google Scholar 

  • Westwood GS, Huang S, Keyhani NO (2006) Molecular and immunological characterization of allergens from the entomopathogenic fungus Beauveria bassiana. Clin Mol Allergy 4(1):12

    Article  PubMed Central  PubMed  Google Scholar 

  • Wickramasinghe LP, Harris S, Jones G, Vaughan Jennings N (2004) Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conserv Biol 18(5):1283–1292

    Article  Google Scholar 

  • Wright RJ (1995) Use of cultural practices in crop insect pest management. Nebraska cooperative extension, bulletin, EC95-1560, pp 11

    Google Scholar 

  • Wyss JH, Tan KH (2000) Screw-worm eradication in the Americas-overview. Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests, 28 May−2 June, 1998 and the fifth international symposium on fruit flies of economic importance, Penerbit Universiti Sains Malaysia, Penang, Malaysia, 1-5 June 1998

    Google Scholar 

  • Zhao Y, Yang G, Wang-Pruski G, You M (2008) Phyllotreta striolata (Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105(5):815–812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nawaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nawaz, A., Ahmad, J. (2015). Insect Pest Management in Conservation Agriculture. In: Farooq, M., Siddique, K. (eds) Conservation Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-11620-4_6

Download citation

Publish with us

Policies and ethics