Skip to main content

Sparse Coding for Key Node Selection over Networks

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

  • 1936 Accesses

Abstract

The size of networks now needed to model real world phenomena poses significant computational challenges. Key node selection in networks, (KNSIN) presented in this paper, selects a representative set of nodes that preserves the sketch of original nodes in the network and thus, serves as a useful solution to this challenge. KNSIN is accomplished via a sparse coding algorithm that efficiently learns a basis set over the feature space defined by the nodes. By executing a stop criterion, KNSIN automatically learns the dimensionality of the node space and guarantees that the learned basis accurately preserves the sketch of the original node space. In experiments, we use two large scale network datasets to evaluate the proposed KNSIN framework. Our results on the two datasets demonstrate the effectiveness of the KNSIN algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F., Babus, A.: Networks in finance. In: Network-based Strategies and Competencies, pp. 367–382 (2009)

    Google Scholar 

  2. Bhuiyan, M.: Guise: Uniform sampling of graphlets for large graph analysis. In: ICDM 2012 (2012)

    Google Scholar 

  3. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  4. Bonnans, J., Gilbert, J., Lemarechal, C., Sagastizabal, C.: Numerical optimization: theoretical and practical aspects. Springer-Verlag New York Inc. (2006)

    Google Scholar 

  5. Chen, B.-C., Kuo, Y.-H., Chen, Y.-Y., Chu, K.-Y., Hsu, W.: Semi-supervised face image retrieval using sparse coding with identity constraint. In: ACM MM 2011, pp. 1369–1372 (2011)

    Google Scholar 

  6. Chen, Z., et al.: Inferring social contextual behavior from bluetooth traces. In: UbiComp 2013 (2013)

    Google Scholar 

  7. Chen, Z., Zhou, J., Chen, Y., Chen, X., Gao, X.: Deploying a social community network in rural areas based on wireless mesh networks. In: IEEE YC-ICT 2009 (2009)

    Google Scholar 

  8. Dimitropoulos, X.A., Riley, G.F.: Creating realistic BGP models. In: IEEE/ACM MASCOTS 2003 (2003)

    Google Scholar 

  9. Dong, W., Charikar, M., Li, K.: Asymmetric distance estimation with sketches for similarity search in high-dimensional spaces. In: SIGIR 2008, pp. 479–490 (2008)

    Google Scholar 

  10. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals of Statistics 32(2), 407–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, H., Tang, J., Hu, X., Liu, H.: Modeling temporal effects of human mobile behavior on location-based social networks. In: ACM CIKM (2013)

    Google Scholar 

  12. Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social networks. In: AAAI (2012)

    Google Scholar 

  13. Gao, X., et al.: SOML: Sparse online metric learning with application to image retrieval. In: AAAI 2014 (2014)

    Google Scholar 

  14. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press (1996)

    Google Scholar 

  15. Hasan, M.A., Zaki, M.J.: Output space sampling for graph patterns. In: VLDB 2009 (2009)

    Google Scholar 

  16. Kadushin, C.: Understanding social networks: Theories, concepts, and findings. Oxford University Press (2012)

    Google Scholar 

  17. Lakkaraju, H., McAuley, J., Leskovec, J.: What’s in a name? Understanding the interplay between titles, content, and communities in social media. In: AAAI 2013 (2013)

    Google Scholar 

  18. Lee, H., Battle, A., Rajat, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS 2007 (2007)

    Google Scholar 

  19. Leordeanu, M., Hebert, M., Sukthankar, R.: Beyond local appearance: Category recognition from pairwise interactions of simple features. In: CVPR 2007 (2007)

    Google Scholar 

  20. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: SIGKDD 2006 (2006)

    Google Scholar 

  21. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Computation 12(2), 337–365 (2000)

    Article  Google Scholar 

  22. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM 2003 (2003)

    Google Scholar 

  23. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: SIGKDD 2010 (2010)

    Google Scholar 

  24. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV 2009 (2009)

    Google Scholar 

  25. Mallat, S., Zhang, Z.: Matching pursuit in a time-frequency dictionary. IEEE Trans. Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  26. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27(1), 415–444 (2001)

    Article  Google Scholar 

  27. Miller, K.T.: Bayesian nonparametric latent feature models. Ph.D. Thesis, University of California, Berkeley (2011)

    Google Scholar 

  28. Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: SIGKDD 2003 (2003)

    Google Scholar 

  29. Newman, M.: The structure and function of complex networks. SIAM Review 45(1), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1997)

    Article  Google Scholar 

  31. Osborne, M.R., Presnell, B., Turlach, B.A.: On the lASSO and its dual. Journal of Computational and Graphical Statistics 9(2), 319–337 (2000)

    MathSciNet  Google Scholar 

  32. Proakis, J.G.: Digital Signal Processing: Principles, Algorithms and Applications. Prentice-Hall Press (2000)

    Google Scholar 

  33. Protter, M., Elad, M.: Image sequence denoising via sparse and redundant representations. IEEE Trans. Image Processing 18(1), 27–36 (2009)

    Article  MathSciNet  Google Scholar 

  34. Raydan, M.: On the barzilai and borwein choice of the step length for the gradient method. IMA Journal on Numerical Analysis 13, 321–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  36. Sallee, P., Olshausen, B.A.: Learning sparse multiscale image representations. In: NIPS 2002 (2002)

    Google Scholar 

  37. Shervashidzea, N.: Efficient graphlet kernels for large graph comparison. In: AISTATS 2009 (2009)

    Google Scholar 

  38. Sporns, O.: Network analysis, complexity, and brain function. Complexity 8(1), 56–60 (2002)

    Article  MathSciNet  Google Scholar 

  39. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: SIGKDD 2009 (2009)

    Google Scholar 

  40. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  41. Weisberg, S.: Applied Linear Regression. Wiley, New York (1980)

    MATH  Google Scholar 

  42. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  43. Xiang, S., Shen, X., Ye, J.: Efficient sparse group feature selection via nonconvex optimization. In: ICML 2013 (2013)

    Google Scholar 

  44. Xu, Y.: Orthogonal component analysis for dimensionality reduction, Nanjing Univerisity (2010)

    Google Scholar 

  45. Xu, Y., Rockmore, D.: Feature selection for link prediction. In: PIKM 2012 (2012)

    Google Scholar 

  46. Xu, Y., Rockmore, D., Kleinbaum, A.M.: Hyperlink prediction in hypernetworks using latent social features. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS, vol. 8140, pp. 324–339. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  47. Xu, Y., Shen, F., Ping, W., Zhao, J.: Takes: a fast method to select features in the kernel space. In: CIKM 2011 (2011)

    Google Scholar 

  48. Zhu, J.: Max-margin nonparametric latent feature models for link prediction. In: ICML 2012 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, Y., Rockmore, D. (2014). Sparse Coding for Key Node Selection over Networks. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics