Skip to main content

Abstract

Despite decades of research, both primary and metastatic brain tumors remain intractable clinical problems. While the kynurenine (KYN) pathway of tryptophan metabolism has been well explored in other cancer types, there are few studies of human brain tumors. The rate-limiting enzymes of the conversion of tryptophan to kynurenine (both forms of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO2)) have been studied predominantly in gliomas with in vitro methods, in vivo animal studies, and ex vivo tissue studies of surgically resected specimens. In these studies, IDO1 has been shown regulated by interferon-γ (as in other cancer types) and TDO2 by the glucocorticoid receptor. IDO and TDO2 have also been positively correlated with tumor grade and negatively correlated with patient survival in glioma. One seminal study also identified KYN as an activator of the aryl hydrocarbon receptor (not previously shown in any other cancer types). Therefore, the KYN pathway may represent new opportunities for treatment strategies for brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HK:

3-Hydroxykynurenine

AMT:

α-[11C]-methyl-L-tryptophan

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

AhR:

Aryl hydrocarbon receptor

CNS:

Central nervous system

FKBP52:

FK506-binding protein 52kDa

GBM:

Glioblastoma

GR:

Glucocorticoid receptor

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon-γ

KYNA:

Kynurenic acid

KYN:

Kynurenine

KMO:

Kynurenine 3-monooxygenase

MRI:

Magnetic resonance imaging

MEN:

Meningioma

MBT:

Metastatic brain tumor

PET:

Positron emission tomography

QUIN:

Quinolinic acid

Tregs:

Regulatory T cells

TRP:

Tryptophan

TDO2:

Tryptophan 2,3-dioxygenase

References

  1. Bollig-Fischer A, Michelhaugh SK, Ali-Fehmi R, Mittal S. The molecular genomics of metastatic brain tumors. OA Mol Oncol. 2013;1(1):6.

    Google Scholar 

  2. Zitron IM, Kamson DO, Kiousis S, Juhasz C, Mittal S. In vivo metabolism of tryptophan in meningiomas is mediated by indoleamine 2,3-dioxygenase 1. Cancer Biol Ther. 2013;14(4):333–9. doi:10.4161/cbt.23624.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Xie Q, Mittal S, Berens ME. Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro Oncol. 2014;16(12):1575–84. doi:10.1093/neuonc/nou147.

    Article  PubMed  Google Scholar 

  4. Bollig-Fischer A, Michelhaugh SK, Wijesinghe P, Dyson G, Kruger A, Palanisamy N et al. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics. Oncotarget. 2015;6(16):14614–14624.

    Google Scholar 

  5. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi:10.1007/s00401-007-0243-4.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi:10.1056/NEJMra0708126.

    Article  CAS  PubMed  Google Scholar 

  7. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77. doi:10.1038/nrn3257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203. doi:10.1038/nature10491.

    Article  CAS  PubMed  Google Scholar 

  9. Eastman CL, Guilarte TR. Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line. Brain Res. 1989;495(2):225–31.

    Article  CAS  PubMed  Google Scholar 

  10. Di Serio C, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S, et al. Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)-1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol. 2005;25(6):981–93. doi:10.1007/s10571-005-8469-y.

    Article  PubMed  Google Scholar 

  11. Walczak K, Deneka-Hannemann S, Jarosz B, Zgrajka W, Stoma F, Trojanowski T, et al. Kynurenic acid inhibits proliferation and migration of human glioblastoma T98G cells. Pharmacol Rep. 2014;66(1):130–6. doi:10.1016/j.pharep.2013.06.007.

    Article  CAS  PubMed  Google Scholar 

  12. Cano OD, Neurauter G, Fuchs D, Shearer GM, Boasso A. Differential effect of type I and type II interferons on neopterin production and amino acid metabolism in human astrocyte-derived cells. Neurosci Lett. 2008;438(1):22–5. doi:10.1016/j.neulet.2008.04.046. Epub Apr 18.

    Article  CAS  PubMed  Google Scholar 

  13. Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ott M, Litzenburger UM, Rauschenbach KJ, Bunse L, Ochs K, Sahm F, et al. Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway. Glia. 2014;5(10):22734.

    Google Scholar 

  15. Soichot M, Vaast A, Vignau J, Guillemin GJ, Lhermitte M, Broly F, et al. Characterization of functional polymorphisms and glucocorticoid-responsive elements in the promoter of TDO2, a candidate gene for ethanol-induced behavioural disorders. Alcohol Alcohol. 2013;48(4):415–25. doi:10.1093/alcalc/agt028.

    Article  CAS  PubMed  Google Scholar 

  16. Posadas Salas MA, Srinivas TR. Update on the clinical utility of once-daily tacrolimus in the management of transplantation. Drug Des Devel Ther. 2014;8:1183–94. doi:10.2147/DDDT.S55458.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–21. doi:10.1158/078-0432.CCR-12-2130. Epub 012 Aug 29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Seligman AM, Shear MJ, Alexander L. Studies in carcinogenesis: VIII. Experimental production of brain tumors in mice with methylcholanthrene. Am J Cancer. 1939;37(3):364–95. doi:10.1158/ajc.1939.364.

    CAS  Google Scholar 

  19. Jacobs VL, Valdes PA, Hickey WF, De Leo JA. Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro. 2011;3(3). doi:10.1042/an20110014.

  20. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003;43:309–34. doi:10.1146/annurev.pharmtox.43.100901.135828.

    Article  CAS  PubMed  Google Scholar 

  21. Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun. 2008;375(3):331–5. doi:10.1016/j.bbrc.2008.07.156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Snodgrass SR, Iversen LL. Amino acid uptake into human brain tumors. Brain Res. 1974;76(1):95–107.

    Article  CAS  PubMed  Google Scholar 

  23. Hubner KF, Purvis JT, Mahaley Jr SM, Robertson JT, Rogers S, Gibbs WD, et al. Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. J Comput Assist Tomogr. 1982;6(3):544–50.

    Article  CAS  PubMed  Google Scholar 

  24. Vezzani A, Gramsbergen JB, Versari P, Stasi MA, Procaccio F, Schwarcz R. Kynurenic acid synthesis by human glioma. J Neurol Sci. 1990;99(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  25. Vezzani A, Gramsbergen JB, Speciale C, Schwarcz R. Production of quinolinic acid and kynurenic acid by human glioma. Adv Exp Med Biol. 1991;294:691–5.

    Article  CAS  PubMed  Google Scholar 

  26. Heyes MP, Saito K, Milstien S, Schiff SJ. Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. J Neurol Sci. 1995;133(1–2):112–8.

    Article  CAS  PubMed  Google Scholar 

  27. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74. doi:10.1038/nm934.

    Article  CAS  PubMed  Google Scholar 

  28. Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 2013;72(6):1031–8; discussion 8–9. doi: 10.1227/NEU.0b013e31828cf945.

  29. Adams S, Teo C, McDonald KL, Zinger A, Bustamante S, Lim CK, et al. Involvement of the kynurenine pathway in human glioma pathophysiology. PLoS One. 2014;9(11), e112945. doi:10.1371/journal.pone.0112945.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Juhasz C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014;13. doi:10.2310/7290.2014.00015.

  31. Alkonyi B, Barger GR, Mittal S, Muzik O, Chugani DC, Bahl G, et al. Accurate differentiation of recurrent gliomas from radiation injury by kinetic analysis of alpha-11C-methyl-L-tryptophan PET. J Nucl Med. 2012;53(7):1058–64. doi:10.2967/jnumed.111.097881. Epub 2012 May 31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kamson DO, Mittal S, Buth A, Muzik O, Kupsky WJ, Robinette NL, et al. Differentiation of glioblastomas from metastatic brain tumors by tryptophan uptake and kinetic analysis: a positron emission tomographic study with magnetic resonance imaging comparison. Mol Imaging. 2013;12(5):327–37.

    PubMed Central  PubMed  Google Scholar 

  33. Kamson DO, Mittal S, Robinette NL, Muzik O, Kupsky WJ, Barger GR, et al. Increased tryptophan uptake on PET has strong independent prognostic value in patients with a previously treated high-grade glioma. Neuro Oncol. 2014;1:1.

    Article  Google Scholar 

  34. Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007;67(15):7082–7. doi:10.1158/0008-5472.CAN-07-1872.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH/NCI R01 grant CA123451 (SM) and Strategic Research Support from the Karmanos Cancer Institute (SM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Mittal M.D., F.R.C.S.C., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michelhaugh, S.K., Varadarajan, K., Guastella, A.R., Mittal, S. (2015). Role of Kynurenine Pathway in Neuro-oncology. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_22

Download citation

Publish with us

Policies and ethics