Skip to main content

Vascular Ultrasound in the Critically Ill

  • Chapter
  • First Online:
Ultrasonography in the ICU

Abstract

Over the past two decades, the use of ultrasound has become more ubiquitous in intensive care units (ICUs) around the world. One of its most beneficial contributions to the bedside care of these patients comes from its ability to visualize vascular anatomy. As technology has become more operator-friendly and economical, tissue resolution has also improved, allowing vascular structures of all sizes to be clearly evaluated and interrogated in real-time. Two indications that have been studied extensively in the ultrasound-focused literature include the diagnosis of deep venous thrombosis (DVT) and the placement of vascular access. Once the observation of unilateral lower-extremity swelling is made, confirming the diagnosis of DVT by means of invasive venogram has since been replaced by ultrasound examination. In regards to access-based procedures, reliance on superficial landmarks and direct visualization of vessels remains important to the process of cannulating vessels, however, ultrasound guidance has improved cannulation success rates among all levels of practitioners and trainees. This chapter analyzes the data surrounding these common practices and makes recommendations on how best to incorporate ultrasound into daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook D, McMullin J, Hodder R, Heule M, Pinilla J, Dodek P, et al. Canadian ICU directors group. Prevention and diagnosis of venous thromboembolism in critically ill patients: a Canadian survey. Crit Care. 2001;5(6):336–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Fox JC, Bertoglio KC. Emergency Performed Ultrasound for DVT Evaluation. Thrombosis. 2011;2011:938709.

    Google Scholar 

  3. Cook D, Crowther M, Meade M, Rabbat C, Griffith L, Schiff D, et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005;33(7):1565–71.

    Article  PubMed  Google Scholar 

  4. Bahloul M, Chaari A, Kallel H, Abid L, Hamida CB, Dammak H, et al. Pulmonary embolism in the intensive care unit: predictive factors, clinical manifestations and outcome. Ann Thoracic Med. 2010;5(2):97–103.

    Article  Google Scholar 

  5. Gibson NS, Schellong SM, E Kheir DY, Beyer-Westendorf J, Gallus AS, McRae S, et al. Safety and sensitivity of two ultrasound strategies in patients with clinically suspected deep venous thrombosis:
 a prospective management study. J Thromb Haemost. 2009;7:2035–41.

    Article  CAS  PubMed  Google Scholar 

  6. Crowther MA, Cook DJ, Griffith LE, Devereaux PJ, Rabbat CC, Clarke FJ, et al. Deep venous thrombosis: clinically silent in the ICU. J Crit Care.2005;20:334–40.

    Article  PubMed  Google Scholar 

  7. Cook DJ, Douketis J, Crowther MA, Anderson DR. VTE in the ICU Workshop Participants. The diagnosis of deep vein thrombosis and pulmonary embolism in medical-surgical intensive care patients. J Crit Care. 2005;20:314–19.

    Article  PubMed  Google Scholar 

  8. Pellerito J, Polak J, Editors. Introduction to vascular ultrasonography. 6th edn. Philadelphia: Elsevier Saunders, 2012.

    Google Scholar 

  9. Kory PD, Pellecchia CM, Shiloh AL, Mayo PH, DiBello C, Koenig S. Accuracy of ultrasonography performed by critical care physicians for the diagnosis of DVT. Chest. 2011;139(3):538–42.

    Article  PubMed  Google Scholar 

  10. Pomero F, Dentaliz F, Borretta V, Bonzini M, Melchio R, Douketis JD, et al. Accuracy of emergency physician-performed ultrasonography in the diagnosis of deep-vein thrombosis: a systematic review and meta-analysis. Thromb Haemost. 2013;109(1):137–45.

    Article  CAS  PubMed  Google Scholar 

  11. Burnside PR, Brown MD, Kline JA. Systematic review of emergency physician-performed ultrasonography for lower-extremity deep vein thrombosis. Acad Emerg Med. 2008;15:493–98.

    Article  PubMed  Google Scholar 

  12. Caronia J, Sarzynski A, Tofighi B, Mahdavi R, Allred C, Panagopoulos G, Mina B Resident performed two-point compression ultrasound is inadequate for diagnosis of deep vein thrombosis
in the critically ill. J. Thromb Thrombolysis. 2014;37(3):298–302.

    Google Scholar 

  13. Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, et al. American College of Chest Physicians/La Societe de Reanimation de Langue Francaise, statement on competence in critical care ultrasonography. Chest. 2009;135(4):1050–60.

    Article  PubMed  Google Scholar 

  14. Bagot CN, Arya R. Virchow and his triad: a question of attribution. Br J Haematol. 2008;143:180–90.

    Article  PubMed  Google Scholar 

  15. Gabrielli A, Layon A, Yu, M, Editors. Civeta, Taylor, and Kirby’s: critical care, 4th edn. Philadelphia: Lippincott Williams and Wilkins; 2009.

    Google Scholar 

  16. Ibrahim EH, Iregui M, Prentice D, Sherman G, Kollef MH, Shannon W. Deep vein thrombosis during prolonged mechanical ventilation despite prophylaxis. Crit Care Med. 2002;30(4):771–74.

    Article  PubMed  Google Scholar 

  17. Heit JA. The epidemiology of venous thromboembolism in the community. Arterioscler Thromb Vasc Biol. 2008;28(3):370–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Van Haren RM, Valle EJ, Thorson CM, Jouria JM, Busko AM, Guarch GA, et al. Hypercoagulability and other risk factors in trauma intensive care unit patients with venous thromboembolism. J Trauma Acute Care Surg. 2014;76(2):443–49.

    Article  CAS  PubMed  Google Scholar 

  19. Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008;358:1037–52.

    Article  CAS  PubMed  Google Scholar 

  20. Cronan JJ. Venous thromboembolic disease: the role of ultrasound. Radiology. 1993;186:619–30.

    Article  CAS  PubMed  Google Scholar 

  21. Andrews EJ, Fleischer AC. Sonography for deep venous thrombosis. Ultrasound Q. 2005;21(4):213–25.

    Google Scholar 

  22. Kassai B, Boissel JP, Cucherat M, Sonie S, Shah NR, Leizorovicz A. A systematic review of the accuracy of ultrasound in the diagnosis of deep venous thrombosis in asymptomatic patients. Thromb Haemost. 2004;91(4):655–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Crisp JG, Lovato LM, Jang TB. Compression ultrasonography of the lower extremity with portable vascular ultrasonography can accurately detect deep venous thrombosis in the emergency department. Ann Emerg Med. 2010;56(6):601–10.

    Article  PubMed  Google Scholar 

  24. Johnson SA, Stevens SM, Woller SC, Lake E, Donadini M, Cheng J, et al. Risk of deep vein thrombosis following a single negative whole-leg compression ultrasound: a systematic review and meta-analysis. JAMA. 2010;303(5):438–45.

    Article  CAS  PubMed  Google Scholar 

  25. Grant JD, Stevens SM, Woller SC, Lee EW, Kee ST, Liu DM, et al. Diagnosis and management of upper extremity deep-vein thrombosis in adults. Thromb Haemost. 2012;108(6):1097–107.

    Article  PubMed  Google Scholar 

  26. Rosen T, Chang B, Kaufman M. Emergency department diagnosis of upper extremity deep venous thrombosis using bedside ultrasonography. Crit Ultrasound J. 2012;4(4):1–5.

    Google Scholar 

  27. Spencer FA, Emery C, Lessard D, Goldberg RJ; Worcester Venous Thromboembolism Study. Upper extremity deep vein thrombosis: a community-based perspective: the Worcester venous thromboembolism study. Am J Med. 2007;120(8):678–84.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hirsch DR, Ingenito EP, Goldhaber SZ. Prevalence of deep venous thrombosis among patients in medical intensive care. JAMA. 1995;274(4):335–7.

    Article  CAS  PubMed  Google Scholar 

  29. Raad I. Intravascular-catheter-related infections. Lancet 1998;351:893–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Feller-Kopman D. Ultrasound-guided internal jugular access: a proposed standardized approach and implications for training and practice. Chest. 2007;132(1):302–9.

    Article  PubMed  Google Scholar 

  32. Mcgee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348(12):1123–33.

    Article  PubMed  Google Scholar 

  33. Byrnes MC, Coopersmith CM. Prevention of catheter-related blood stream infection. Curr Opin Crit Care. 2007;13(4):411–5.

    Article  PubMed  Google Scholar 

  34. Mermel L. Infections related to central venous catheters in US intensive care units. Lancet. 2003;361(9368):1562.

    Article  PubMed  Google Scholar 

  35. Dudrick SJ. History of vascular access. JPEN J Parenter Enteral Nutr. 2006;30(1 Suppl):47–56.

    Article  Google Scholar 

  36. Aubaniac R. Subclavian intravenous transfusion: advantages and technic. Afr Francaise Chir. 1952;8:131–5.

    CAS  Google Scholar 

  37. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol. 1953;39:368–76.

    Article  CAS  PubMed  Google Scholar 

  38. Yoffa D. Supraclavicular subclavian venepuncture and catheterization. Lancet. 1965;2:614–7.

    Article  CAS  PubMed  Google Scholar 

  39. Dudrick SJ, Vars HM, Rawnsley HM, Rhoads JE. Total intravenous feeding and growth in puppies. Fed Proc. 1966;25:481.

    Google Scholar 

  40. Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery. 1968;64:134–42.

    CAS  PubMed  Google Scholar 

  41. Ullman JI, Stoelting RK. Internal jugular vein location with the ultrasound Doppler blood flow detector. Anesth Analg. 1978;57(1):118.

    Article  CAS  PubMed  Google Scholar 

  42. Yonei A, Nonoue T, Sari A. Real-time ultrasonic guidance for percutaneous puncture of the internal jugular vein. Anesthesiology. 1986;64(6):830–1.

    Article  CAS  PubMed  Google Scholar 

  43. Kusminsky RE. Complications of central venous catheterization. J Am Coll Surg. 2007;204(4):681–96.

    Article  PubMed  Google Scholar 

  44. Bernard RW, Stahl WM. Subclavian vein catheterizations: a prospective study: i. Non-infectious complications. Ann Surg. 1971;173:184–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sznajder JI, Zveibil FR, Bitterman H, Weiner P, Bursztein S. Central vein catheterization: failure and complication rates by three per- cutaneous approaches. Arch Intern Med. 1986;146:259–61.

    Article  CAS  PubMed  Google Scholar 

  46. Defalque RJ. Percutaneous catheterization of the internal jugular vein. Anesth Analg. 1974;53:116–21.

    CAS  PubMed  Google Scholar 

  47. Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lamperti M, Bodenham AR, Pittiruti M, Blaivas M, Augoustides JG, Elbarbary M, et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med. 2012;38(7):1105–17.

    Article  PubMed  Google Scholar 

  49. Rodriguez CJ, Bolanowski A, Patel K, Perdue P, Carter W, Lukish JR. Classical positioning decreases the cross-sectional area of the subclavian vein. Am J Surg. 2006;192(1):135–7.

    Article  PubMed  Google Scholar 

  50. Fortune JB, Feustel P. Effect of patient position on size and location of the subclavian vein for percutaneous puncture. Arch Surg. 2003;138(9):996–1000.

    Article  PubMed  Google Scholar 

  51. Parry G. Trendelenburg position, head elevation and a midline position optimize right internal jugular vein diameter. Can J Anaesth. 2004;51(4):379–81.

    Article  PubMed  Google Scholar 

  52. Lamperti M, Subert M, Cortellazzi P, Vailati D, Borrelli P, Montomoli C, et al. Is a neutral head position safer than 45-degree neck rotation during ultrasound-guided internal jugular vein cannulation? Results of a randomized controlled clinical trial. Anesth Analg. 2012;114(4):777–84.

    Article  PubMed  Google Scholar 

  53. Stone MB, Price DD, Anderson BS. Ultrasonographic investigation of the effect of reverse Trendelenburg on the cross-sectional area of the femoral vein. J Emerg Med. 2006;30(2):211–3.

    Article  PubMed  Google Scholar 

  54. Airapetian N, Maizel J, Langelle F, Modeliar SS, Karakitsos D, Dupont H, et al. Ultrasound-guided central venous cannulation is superior to quick-look ultrasound and landmark methods among inexperienced operators: a prospective randomized study. Intensive Care Med. 2013;39(11):1938–44.

    Article  PubMed  Google Scholar 

  55. Tammam TF, El-Shafey EM, Tammam HF. Ultrasound-guided internal jugular vein access: comparison between short axis and long axis techniques. Saudi J Kidney Dis Transpl. 2013;24(4):707–13.

    Article  PubMed  Google Scholar 

  56. Gillman LM, Blaivas M, Lord J, Al-Kadi A, Kirkpatrick AW. Ultrasound confirmation of guidewire position may eliminate accidental arterial dilatation during central venous cannulation. Scand J Trauma Resusc Emerg Med. 2010;18:39.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Matsushima K, Frankel HL. Bedside ultrasound can safely eliminate the need for chest radiographs after central venous catheter placement: CVC sono in the surgical ICU (SICU). J Surg Res. 2010;163(1):155–61.

    Article  PubMed  Google Scholar 

  58. Maury E, Guglielminotti J, Alzieu M, Guidet B, Offenstadt G. Ultrasonic examination: an alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med. 2001;164(3):403–5.

    Article  CAS  PubMed  Google Scholar 

  59. Weekes AJ, Johnson DA, Keller SM, Efune B, Carey C, Rozario NL, et al. Central vascular catheter placement evaluation using saline flush and bedside echocardiography. Acad Emerg Med. 2014;21(1):65–72.

    Article  PubMed  Google Scholar 

  60. Cortellaro F, Mellace L, Paglia S, Costantino G, Sher S, Coen D. Contrast enhanced ultrasound vs chest x-ray to determine correct central venous catheter position. Am J Emerg Med. 2014;32(1):78–81. doi:10.1016/j.ajem.2013.10.001. Epub 2013 Oct 9.

    Article  PubMed  Google Scholar 

  61. Parkinson R, Gandhi M, Harper J, Archibald C. Establishing an ultrasound guided peripherally inserted central catheter (PICC) insertion service. Clin Radiol. 1998;53(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  62. Nicholson J. Development of an ultrasound-guided PICC insertion service. Br J Nurs. 2010;19(10):9–17.

    Article  Google Scholar 

  63. Turcotte S, Dubé S, Beauchamp G. Peripherally inserted central venous catheters are not superior to central venous catheters in the acute care of surgical patients on the ward. World J Surg. 2006;30(8):1605–19.

    Article  PubMed  Google Scholar 

  64. Trerotola SO, Stavropoulos SW, Mondschein JI, Patel AA, Fishman N, Fuchs B, et al. Triple-lumen peripherally inserted central catheter in patients in the critical care unit: prospective evaluation. Radiology. 2010;256(1):312–20.

    Article  PubMed  Google Scholar 

  65. Malinoski D, Ewing T, Bhakta A, Schutz R, Imayanagita B, Casas T, et al. Which central venous catheters have the highest rate of catheter-associated deep venous thrombosis: a prospective analysis of 2128 catheter days in the surgical intensive care unit. J Trauma Acute Care Surg. 2013;74(2):454–60; discussion 461–2.

    Article  PubMed  Google Scholar 

  66. Giuffrida D, Bryan-Brown C, Lumb P, Kwun K, Rhoades H. Central vs. peripheral catheters in critically ill patients. Chest. 1986;90:806–9.

    Article  CAS  PubMed  Google Scholar 

  67. Fearonce G, Faraklas I, Saffle JR, Cochran A. Peripherally inserted central venous catheters and central venous catheters in burn patients: a comparative review. J Burn Care Res. 2010;31(1):31–5.

    Article  PubMed  Google Scholar 

  68. Ajenjo MC, Morley JC, Russo AJ, McMullen KM, Robinson C, Williams RC, Warren DK. Peripherally inserted central venous catheter-associated bloodstream infections in hospitalized adult patients. Infect Control Hosp Epidemiol. 2011;32(2):125–30.

    Article  PubMed  Google Scholar 

  69. Safdar N, Maki DG. Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest. 2005;128(2):489–95.

    Article  PubMed  Google Scholar 

  70. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc.2006;81(9):1159–71.

    Article  PubMed  Google Scholar 

  71. Maki DG, Ringer M. Risk factors for infusion-related phlebitis with small peripheral venous catheters. A randomized controlled trial. Ann Intern Med. 1991;114(10):845–54.

    Article  CAS  PubMed  Google Scholar 

  72. Tager IB, Ginsberg MB, Ellis SE, Walsh NE, Dupont I, Simchen E, Faich GA. An epidemiologic study of the risks associated with peripheral intravenous catheters. Am J Epidemiol. 1983;118(6):839–51.

    CAS  PubMed  Google Scholar 

  73. Gregg SC, Murthi SB, Sisley AC, Stein DM, Scalea TM. Ultrasound-guided peripheral intravenous access in the intensive care unit. J Crit Care. 2010;25(3):514–9.

    Google Scholar 

  74. Keyes LE, Frazee BW, Snoey ER, Simon BC, Christy D. Ultrasound-guided brachial and basilic vein cannulation in emergency department patients with difficult intravenous access. Ann Emerg Med. 1999;34(6):711–4.

    Article  CAS  PubMed  Google Scholar 

  75. Costantino TG, Parikh AK, Satz WA, Fojtik JP. Ultrasonography-guided peripheral intravenous access versus traditional approaches in patients with difficult intravenous access. Ann Emerg Med. 2005;46(5):456–61.

    Article  PubMed  Google Scholar 

  76. Blaivas M. Ultrasound-guided peripheral i.v. insertion in the ED. Am J Nurs. 2005;105(10):54–7.

    Article  PubMed  Google Scholar 

  77. Aponte H, Acosta S, Rigamonti D, Sylvia B, Austin P, Samolitis T. The use of ultrasound for placement of intravenous catheters. AANA J. 2007; 75(3):212–6.

    PubMed  Google Scholar 

  78. Kerforne T, Petitpas F, Frasca D, Goudet V, Robert R, Mimoz O. Ultrasound-guided peripheral venous access in severely ill patients with suspected difficult vascular puncture. Chest. 2012;141(1):279–80.

    Article  PubMed  Google Scholar 

  79. Frezza EE, Mezghebe H. Indications and complications of arterial catheter use in surgical or medical intensive care units: analysis of 4932 patients. Am Surg. 1998;64(2):127–31.

    CAS  PubMed  Google Scholar 

  80. Shiver S, Blaivas M, Lyon M. A prospective comparison of ultrasound-guided and blindly placed radial arterial catheters. Acad Emerg Med. 2006;13(12):1275–9.

    Article  PubMed  Google Scholar 

  81. Nagabhushan S, Colella JJ, Wagner R. Use of Doppler ultrasound in performing percutaneous cannulation of the radial artery. Crit Care Med. 1976;4:327.

    Article  CAS  PubMed  Google Scholar 

  82. Levin PD, Sheinin O, Gozal Y. Use of ultrasound guidance in the insertion of radial artery catheters. Crit Care Med. 2003;31(2):481–4.

    Article  PubMed  Google Scholar 

  83. Schwemmer U, Arzet HA, Traunter H, Rauch S, Roewer N, Greim CA. (2006) Ultrasound-guided arterial cannulation in infants improves success rate. Eur J Anaesthesiol. 23:476–480.

    Article  CAS  PubMed  Google Scholar 

  84. Habib J, Baetz L, Satiani B. Assessment of collateral circulation to the hand prior to radial artery harvest. Vasc Med. 2012;17(5):352–61.

    Article  PubMed  Google Scholar 

  85. Blaivas M, Brannam L, Fernandez E. Short-axis versus long-axis approaches for teaching ultrasound-guided vascular access on a new inanimate model. Acad Emerg Med. 2003;10(12):1307–11.

    Article  PubMed  Google Scholar 

  86. Rosen BT, Uddin PQ, Harrington AR, Ault BW, Ault MJ. Does personalized vascular access training on a nonhuman tissue model allow for learning and retention of central line placement skills? Phase II of the procedural patient safety initiative (PPSI-II). J Hosp Med. 2009;4(7):423–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shea C. Gregg MD .

Editor information

Editors and Affiliations

Electronic supplementary material

Video Legends

Video Legends

Video 4.1 Color-flow Doppler showing femoral artery pulsatility.

Video 4.2 Compression of popliteal vein with ultrasound probe.

Video 4.3 Popliteal vein showing augmented flow upon compression of calf muscle.

Video 4.4 Bedside echocardiography showing right ventricular strain in pulmonary embolism.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gregg, S., Gregg, K. (2015). Vascular Ultrasound in the Critically Ill. In: Ferrada, P. (eds) Ultrasonography in the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-11876-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11876-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11875-8

  • Online ISBN: 978-3-319-11876-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics