Skip to main content

Container Terminal Operation: Current Trends and Future Challenges

  • Chapter
  • First Online:
Handbook of Ocean Container Transport Logistics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 220))

Abstract

This study reviews various planning and control activities in container terminals. Decision-making problems for operation planning and control are defined and new trends in the technological development for each decision-making process are discussed. Relevant research directions and open questions are proposed. The functions of the Terminal Operating System (TOS), which is the software used to implement the decision-making processes, are discussed and commercial TOSs are introduced and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container ship stowage problem. Journal of Heuristics, 12, 211–233.

    Article  Google Scholar 

  • Angeloudis, P., & Bell, M. G. H. (2009). An uncertainty-aware AGV assignment algorithm for automated container terminals. Transportation Research Part E, 46(3), 354–366.

    Article  Google Scholar 

  • Bazzazi, M., Safaei, N., & Javadian, N. (2009). A genetic algorithm to solve the storage space allocation problem. Computers & Industrial Engineering, 56, 44–52.

    Article  Google Scholar 

  • Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28, 611–630.

    Article  Google Scholar 

  • Böse, J. W. (2011) Handbook of terminal planning. Operations research/computer science interface series (Vol. 49). New York: Springer.

    Google Scholar 

  • Chen, L., Bostel, N., Dejax, P., Cai, J., & Xi, L. (2007). A tabu search algorithm for integrated scheduling problem of container handling systems in a maritime terminal. European Journal of Operational Research, 181, 40–58.

    Article  Google Scholar 

  • Choo, S., Klabjan, D., & Simchi-Levi, D. (2010). Multiship crane sequencing with yard congestion constraints. Transportation Science, 44(1), 98–115.

    Article  Google Scholar 

  • Crainic, T. G., & Kim, K. H. (2007) Intermodal transportation. In C. Barnhart & G. Laporte (Eds.), Handbook in OR & MS (Vol. 14, pp. 467–537). Amsterdam: Elsevier.

    Google Scholar 

  • CyberLogitec (2013) OPUS Terminal. http://www.cyberlogitec.com/terminal. Accessed Oct 2013.

  • Dekker, R., Voogd, P., & van Asperen E. (2006). Advanced methods for container stacking. OR Spectrum, 28, 563–586.

    Article  Google Scholar 

  • Evers, J. M., & Koppers, S. A. (1996). Automated guided vehicle traffic control at a container terminal. Transportation Research Part A, 30(1), 21–34.

    Google Scholar 

  • Goodchild, A. V. (2005) Crane double cycling in container ports: algorithms, evaluation, and planning, PhD dissertation, University of California, Berkeley.

    Google Scholar 

  • Goodchild, A. V., & Daganzo, C. F. (2006). Double-cycling strategies for container ships and their effect on ship loading and unloading operations. Transportation Science, 40(4), 473–483.

    Article  Google Scholar 

  • Goodchild, A. V., & Daganzo, C. F. (2007). Crane double cycling in container ports: Planning methods and evaluation. Transportation Research Part B, 41(8), 875–891.

    Article  Google Scholar 

  • Grunow, M., Günther, H.-O., & Lehmann, M. (2004). Dispatching multi-load AGVs in highly automated seaport container terminals. OR Spectrum, 26(2), 211–236.

    Article  Google Scholar 

  • Hendriks, M., Laumanns, M., Lefeber, E., & Udding, J. T. (2010). Robust cyclic berth planning of container vessels. OR Spectrum, 32, 501–517.

    Article  Google Scholar 

  • Hong Kong International Terminals (HIT) (2014). nGen. http://www.hit.com.hk/en/Innovation. Accessed Jan 2014

  • Huang, Y., Liang, C., & Yang, Y. (2009). The optimum route problem by genetic algorithm for load/unloading of yard cranes. Computers & Industrial Engineering, 56, 993–1001.

    Article  Google Scholar 

  • Imai, A., Sun, X., Nishimura, E., Papadimitriou, S., & Sasaki, K. (2002). The containership loading problem. International Journal of Maritime Economics, 4, 126–148.

    Article  Google Scholar 

  • Imai, A., Sun, X., Nishimura, E., & Papadimitriou, S. (2005). Berth allocation in a container port: Using a continuous location space approach. Transportation Research part B, 39, 199–221.

    Article  Google Scholar 

  • Imai, A., Sasaki, K., Sun, X., Nishimura, E., & Papadimitriou, S. (2006). Multi-objective simultaneous stowage and load planning for a container ship with container rehandles in yard stacks. European Journal of Operational Research, 171, 373–389.

    Article  Google Scholar 

  • Jiang, X., Chew, E. P., Lee, L. H., & Tan, K. C. (2012a). Flexible space-sharing strategy for storage yard management in a transshipment hub port. OR Spectrum, 35(2), 417–439.

    Google Scholar 

  • Jiang, X., Chew, E. P., Lee, L. H., & Tan, K. C. (2012b). A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port. European Journal of Operational Research, 221, 64–73.

    Google Scholar 

  • Jung, S. H., & Kim, K. H. (2006). Load scheduling for multiple quay cranes in port container terminals. Journal of Intelligent Manufacturing, 17, 479–492.

    Google Scholar 

  • Kemme, N. (2011). RMG crane scheduling and stacking. In J. W. Bose (Ed.), Handbook of terminal planning. NewYork: Springer.

    Google Scholar 

  • Kemme, N. (2012). Effects of storage block layout and automated yard cranes systems on the performance of seaport container terminals. OR Spectrum, 34, 563–591.

    Google Scholar 

  • Kim, K. H. (2007). Decision-making problems for the operation of container terminals. Journal of the Korean Institute of Industrial Engineers, 33(3), 290–302.

    Google Scholar 

  • Lau, H. Y. K., & Zhao, Y. (2008). Integrated scheduling of handling equipment at automated container terminals. International Journal of Production Economics, 112(2), 665–682.

    Google Scholar 

  • Lee, B. K., & Kim, K. H. (2010). Optimizing the block size in container yards. Transportation Research Part E, 46(1), 120–135.

    Google Scholar 

  • Lee, B. K., & Kim, K. H. (2013). Optimizing the yard layout in container terminals. OR Spectrum, 35(2), 363–398.

    Google Scholar 

  • Lee, C. Y., & Yu, M. Z. (2012) Inbound container storage price competition between the container terminal and a remote container yard. Flexible Services and Manufacturing Journal, 24(3), 320–348.

    Google Scholar 

  • Lee, L. H., Chew, E. P., Tan, K. C., & Han, Y. B. (2006). A yard storage strategy for minimizing traffic management in transshipment hubs. OR Spectrum, 28, 539–561.

    Google Scholar 

  • Lee, D. H., Cao, Z., & Meng, Q. (2007). Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm. International Journal of Production Economics, 107, 115–124.

    Google Scholar 

  • Lee, D. H., Wang, H. Q., & Miao, L. (2008). Quay crane scheduling with non-interference constraints in port container terminals. Transportation Research Part E, 44, 124–135.

    Google Scholar 

  • Lee, D. H., Cao, J. X., & Chen, J. H. (2009). A heuristic algorithm for yard truck scheduling and storage allocation problems. Transportation Research Part E, 45(5), 810–820.

    Google Scholar 

  • Lee, D. H., Chen, J. H., & Cao, J. X. (2010). The continuous berth allocation problem: A greedy randomized adaptive search solution. Transportation Research Part E, 46(6), 1017–1029.

    Google Scholar 

  • Li, W., Petering, M. E. H., Goh, M., & de Souza R. (2009). Discrete time model and algorithms for container yard crane scheduling. European Journal of Operational Research, 198(1), 165–172.

    Google Scholar 

  • Linn, R., & Zhang, C. (2003). A heuristic for dynamic yard crane deployment in a container terminal. IIE Transactions, 35, 161–174.

    Google Scholar 

  • Liu D. K., & Kulatunga (2007). Simultaneous planning and scheduling for multi-autonomous vehicles. Studies in Computational Intelligence, 49, 437–464.

    Google Scholar 

  • Meisel, F. (2009). Seaside operations planning in container terminals. Berlin: Physica-Verlag.

    Google Scholar 

  • Moccia, L., Cordeau, J.-F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics, 53, 45–59.

    Google Scholar 

  • Möhring, R. H., Köhler, E., Gawrilow, E., & Stenzel, B. (2004) Conflict-free real-time AGV routing. Preprint 026-2004, Technical University Berlin, Institute of Mathematics

    Google Scholar 

  • Murty, K. G. (2007). Yard crane pools and optimum layouts for storage yards of container terminals. Journal of Indutrial and Systems Engineering, 1(3), 190–199.

    Google Scholar 

  • NAVIS. (2013) Container terminal operation. http://www.navis.com/solutions/container. Accessed Sept 2013

  • Ng, W. C., & Mak, K. L. (2005). An effective heuristic for scheduling a yard crane to handle jobs with different ready times. Engineering Optimization, 37(8), 867–877.

    Google Scholar 

  • Ng, W. C., Mak, K. L., & Zhang, Y. X. (2007). Scheduling trucks in container terminals using a genetic algorithm. Engineering Optimization, 39(1), 33–47.

    Google Scholar 

  • Nguyen, V. D., & Kim, K. H. (2013). Heuristic algorithms for constructing transporter pools in container terminals. IEEE Transactions on Intelligent Transportation Systems, 14(2), 517–526.

    Google Scholar 

  • Park, Y. M., & Kim, K. H. (2003). A scheduling method for berth and quay cranes. OR Spectrum, 25(1), 1–23.

    Google Scholar 

  • Petering, M. H. (2009). Effect of block width and storage yard layout on marine container terminal performance. Transportation Research Part E, 45(4), 591–610.

    Google Scholar 

  • PSA (2014) CITOS. https://www.singaporepsa.com/our-commitment/innovation. Accessed in Jan 2014

  • Realtime B. Solutions (R. B. S.). (2013) Terminal Operation Package System (TOPS). http://rbs-tops.com/product-details/. Accessed Sept 2013

  • Tideworks. (2013) Mainsail Vanguard™ Marine terminal operating system. http://www.tideworks.com/products/mainsail/. Accessed Sept 2013.

  • Total Soft Bank. (2013) CATOS. http://www.tsb.co.kr/RBS/Fn/FreeForm/View.php?RBIdx=Ver1_38. Accessed Sept 2013.

  • Sammarra, M., Cordeau, J. F., Laporte, G., & Monaco, M. F. (2007). A tabu search heuristic for the quay crane scheduling problem. Journal of Scheduling, 10, 327–336.

    Google Scholar 

  • Sauri, S., & Martin, E. (2011). Space allocating strategies for improving import yard performance at marine terminals. Transportation Research Part E, 47, 1038–1057.

    Google Scholar 

  • Schwarze, S., Voss, S., Zhou, G., & Zhou, G. (2012). Scientometric analysis of container terminals and ports literature and interaction with publications on distribution networks. In H. Hu, et al. (Eds.), Computational logistics, volume 7555 of lecture notes in computer science (pp. 33–52). Berlin: Springer.

    Google Scholar 

  • Sciomachen, A., & Tanfani, E. (2007). A 3D-BPP approaoch for optimizing stowage plans and terminal productivity. European Journal of Operational Research, 183(3), 1433–1446.

    Google Scholar 

  • Sharif, Q., & Huynh, N. (2013). Storage space allocation at marine container terminals using ant-based control. Expert Systems with Applications, 40, 2323–2330.

    Google Scholar 

  • Stahlbock, R., & Voss, S. (2008). Operations research at container terminals: A literature update. OR Spectrum, 30, 1–52.

    Google Scholar 

  • Vis, I. F. A. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709.

    Google Scholar 

  • Vis, I. F. A., & de Koster R. (2003). Trasshipment of containers at a container terminal: An overview. European Journal of Operational Research, 147, 1–16.

    Google Scholar 

  • Vis, I. F. A., & Harika, I. (2004). Comparison of vehicle types at an automated container terminal. OR Spectrum, 26, 117–143.

    Google Scholar 

  • Wan, Y., & Tsai, P. C. (2009). The assignment of storage locations to containers for a container stack. Naval Research Logistics, 56, 699–713.

    Google Scholar 

  • Wang, Y., & Kim, K. H. (2011). A quay crane scheduling algorithm considering the workload of yard cranes in a container yard. Journal of Intelligent Manufacturing, 22, 459–470.

    Google Scholar 

  • Won, S. H., Zhang, X., & Kim, K. H. (2012). Workload-based yard-planning system in container terminals. Journal of Intelligent Manufacturing, 23(6), 2193–2206.

    Google Scholar 

  • Woo, Y. J., & Kim, K. H. (2011). Estimating the space requirement for outbound container inventories in port container terminals. International Journal of Production Economics, 133, 293–301.

    Google Scholar 

  • Wu, Y., Luo, J., Zhang, D., & Dong, M. (2013). An integrated programming model for storage management and vehicle scheduling at container terminals. Research in Transportation Economics, 42, 13–27.

    Google Scholar 

  • Yang, C. H., Choi, Y. S., & Ha, T. Y. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum, 26(2), 149–170.

    Google Scholar 

  • Yantai Huadong Soft-Tech. (2014) HD-CiTOS. http://www.huadong.net/UploadFile/datum/CiTOS.pdf. Accessed in Jan 2014.

  • Yuan, S., Skinner, B. T., Huang, S., Liu, D. K., Dissanayake, G., Lau, H., & Pagac, D. (2011). A job grouping approach for planning container transfers at automated seaport container terminals. Advanced Engineering Informatics, 25, 413–426.

    Google Scholar 

  • Zhang, H. P., & Kim, K. H. (2009). Maximizing the number of dual-cycle operations of quay cranes in container terminals. Computers & Industrial Engineering, 56(3), 979–992.

    Google Scholar 

  • Zhang, C., Wan, Y., Liu, J., & Linn, R. (2002). Dynamic crane deployment in container storage yards. Transportation Research, B 36, 537–555.

    Google Scholar 

Download references

Acknowledgement

This research was a part of the project titled ‘Technological Development of Low-carbon Automated Container Terminals’, funded by the Ministry of Oceans and Fisheries, Korea.“(201309550001)”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kap Hwan Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, K., Lee, H. (2015). Container Terminal Operation: Current Trends and Future Challenges. In: Lee, CY., Meng, Q. (eds) Handbook of Ocean Container Transport Logistics. International Series in Operations Research & Management Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-11891-8_2

Download citation

Publish with us

Policies and ethics