Skip to main content
  • 1735 Accesses

Abstract

Phase-locked loop (PLL) circuits are widely used to generate a precise frequency signal from a very high precision reference signal. It has wide application in wired and wireless communication systems to provide accurate carrier that is phase aligned with the incoming high-precision reference clock signal. The voltage-controlled oscillator (VCO) signal is divided and compared with the high-precision reference by the phase frequency detector (PFD). Then, the error signal is fed into a charge pump to transform the phase error detected by the PFD into current pulses. The pulses are filtered by the loop filter and then the filtered voltage is used to control the VCO to stabilize its phase and frequency variations. The negative feedback mechanism around the PLL loop results in the generation of a tunable and stable output signal at the desired frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. E. Meninger and M. H. Perrott, “A 1-MHZ Bandwidth 3.6-GHz 0.18-um CMOS Fractional-N Synthesizer Utilizing a Hybrid PFD/DAC Structure for Reduced Broadband Phase Noise,” IEEE J. Solid-State Circuits, vol. 41, pp. 966–980, Apr. 2006.

    Article  Google Scholar 

  2. T. A. D. Riley, M. A. Copeland, T. A. Kwasniewski, “Delta-sigma modulation in fractional-N frequency synthesis,” IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 553–559, May. 1993.

    Article  Google Scholar 

  3. A. Swaminathan, K. J. Wang, and I. Galton, “A wide-bandwidth 2.4 GHz ISM band fractional-N PLL with adaptive phase noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2639–2649, Dec. 2007.

    Article  Google Scholar 

  4. J. Yu, F. Zhao, J. Cali, D. Ma, X. Geng, F. F. Dai, J. D. Irwin, A. Aklian, “A single chip X-band chirp radar MMIC with stretch processing,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2012, pp. 1–4.

    Google Scholar 

  5. S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, Jul. 2003.

    Article  Google Scholar 

  6. X. Li, S. shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.

    Article  Google Scholar 

  7. J. Crols and M. Steyaert, “A fully integrated 900 MHz CMOS double quadrature downconverter,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1995, pp. 136–137.

    Google Scholar 

  8. P. Andreani, “A 2 GHz, 17 % tuning range quadrature CMOS VCO with high figure-of-merit and 0.6º phase error,” in Proc. European Solid-State Circuits Conf., Aug. 2002, pp. 815–818.

    Google Scholar 

  9. A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 392–393.

    Google Scholar 

  10. T. Liu, “A 6.5-GHz monolithic CMOS voltage-controlled oscillator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 404–405.

    Google Scholar 

  11. P. Andreani and X. Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1883–1893, Nov. 2004.

    Article  Google Scholar 

  12. H. R. Kim, C. Y. Cha, S. M. Oh, M. S. Yang, and S. G. Lee, “A very-low power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952–955, Apr. 2004.

    Article  Google Scholar 

  13. B. Soltanian and P. Kinget, “A low phase noise quadrature LC VCO using capacitive common-source coupling,” in Proc. European Solid-State Circuits Conf., Sep. 2006, pp. 436–439.

    Google Scholar 

  14. D. Guermandi, P. Tortori, E. Franchi, and A. Gnudi, “A 0.83-2.5-GHz continuously tunable quadrature VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2620–2627, Dec. 2005.

    Article  Google Scholar 

  15. A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Sep. 2007.

    Article  Google Scholar 

  16. P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737–1747, Dec. 2002.

    Article  Google Scholar 

  17. G. Cusmai, M. Repossi, G. Albasini, A. Mazzanti, and F. Svelto, “A magnetically tuned quadrature oscillator,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2870–2877, Dec. 2007.

    Article  Google Scholar 

  18. X. Geng and F. F. Dai, “An 8.7–13.8 GHz transformer-coupled varactor-less quadrature current-controlled oscillator in 0.18 µm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1669–1677, Sep. 2010.

    Article  Google Scholar 

  19. S. Li, I. Kipnis, and M. Ismail, “A 10-GHz CMOS quadrature LC-VCO for multirate optical applications,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1626–1634, Oct. 2003.

    Article  Google Scholar 

  20. H. Tong, S. Cheng, Y. Lo, A. I. Karsilayan, and J. Silva-Martinez, “An LC quadrature VCO using capacitive source degeneration coupling to eliminate bi-modal oscillation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 10, pp. 1–9, Oct. 2012.

    Article  MathSciNet  Google Scholar 

  21. A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, Sep. 2007.

    Article  Google Scholar 

  22. J. van der Tang, P. van de Ven, D. Kasperkoviz, and A. van Roermund, “Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 657–661, May 2002.

    Article  Google Scholar 

  23. D. Huang, W. Li, J. Zhou, N. Li, and J. Chen, “A frequency synthesizer with optimally coupled QVCO and harmonic-rejection SSB mixer for multi-standard wireless receiver,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1307–1320, June 2011.

    Article  Google Scholar 

  24. M. Valla, G. Montagna, R. Castello, R. Tonietto, and I. Bietti, “A 72-mW CMOS 802.11 A direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 970–977, Apr. 2005.

    Article  Google Scholar 

  25. P. van de Ven, J. van der Tang, D. Kasperkovitz, A. van Roermund, “An optimally coupled 5-GHz quadrature LC oscillator,” in Symp. VLSI Circuits, 2001, pp. 115–118.

    Google Scholar 

  26. D. Leenaerts, C. Dijkmans, and M. Thompson, “An 0.18 µm CMOS 2.45 GHz low-power quadratureVCO with 15 % tuning range,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig. Papers, 2002, pp. 67–70.

    Google Scholar 

  27. B. Razavi, RF Microelectronics Second Edition, New Jersey, Prentice Hall, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, F., Dai, F. (2015). Introduction. In: Low-Noise Low-Power Design for Phase-Locked Loops. Springer, Cham. https://doi.org/10.1007/978-3-319-12200-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12200-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12199-4

  • Online ISBN: 978-3-319-12200-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics