Skip to main content

Large-Scale Production of Algal Biomass: Raceway Ponds

  • Chapter
  • First Online:
Algae Biotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Raceway ponds are widely used in commercial production of algal biomass. They are effective and inexpensive, but suffer from a relatively low productivity and vagaries of weather. This chapter discusses design and operation of raceways for large-scale production of algal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Surface area of raceway (m2)

C x :

Biomass concentration (kg m−3)

D :

Dilution rate (h−1)

d h :

Hydraulic diameter of flow channel (m)

e :

Efficiency of the motor, drive, and the paddlewheel

f M :

Manning channel roughness factor (s m−1/3)

g :

Gravitational acceleration (9.81 m s−2)

h :

Culture depth in pond (m)

I L :

Local irradiance at depth L (μE m−2 s−1)

I o :

Incident irradiance on the surface of the pond (μE m−2 s−1)

K a :

Light absorption coefficient of the biomass (μE m−2 s−1)

K i :

Photoinhibition constant (μE m−2 s−1)

K L :

Light saturation constant (μE m−2 s−1)

L :

Depth (m)

L r :

Total length of the flow loop (m)

l c :

Depth at which the local irradiance level is at the light compensation point (m)

P :

Power requirement for paddlewheel (W)

PAR:

Photosynthetically active radiation

P a :

Areal productivity of biomass (kg m−2 d−1)

PVC:

Polyvinyl chloride

P v :

Volumetric biomass productivity (kg m−3 d−1)

p :

Length as shown in Fig. 1 (length of pond) (m)

Fig. 1
figure 1

A top view of a raceway pond as typically used for algal biomass production

Q f :

Feed flow rate (m3 h−1)

q :

Length as shown in Fig. 1 (width of pond) (m)

Re :

Reynolds number defined by Eq. (3)

Δt :

Time interval (d)

u :

Flow velocity in channel (m s−1)

V L :

Working volume of the raceway (m3)

w :

Channel width (m)

X f :

Peak concentration of biomass (kg m−3)

X i :

Initial concentration of the biomass (kg m−3)

x b :

Pseudo steady state biomass concentration in the pond (kg m−3)

μ :

Viscosity of the algal broth (Pa s)

μ av :

Depth-averaged specific growth rate in the illuminated volume (d−1)

μ L :

Local specific growth rate at depth L (d−1)

μ max :

Maximum specific growth rate (d−1)

ρ :

Density of algal broth (kg m−3)

References

  • Becker, E. W. (1994). Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ben-Amotz, A. (2012). Algal biotechnology, from health food to bio-fuels. Paper presented at the Third Latin American Congress of Algal Biotechnology, Concepción, Chile, January 16–18.

    Google Scholar 

  • Benemann, J. R., Tillett, D. M., & Weissman, J. C. (1987). Microalgae biotechnology. Trends in Biotechnology, 5, 47–53.

    Article  Google Scholar 

  • Borowitzka, M. A. (2005). Culturing microalgae in outdoor ponds. In I. R. A. Andersen (Ed.), Algal culturing techniques (pp. 205–218). New York: Elsevier.

    Google Scholar 

  • Borowitzka, L. J., & Borowitzka, M. A. (1989). Industrial production: Methods and economics. In R. C. Cresswell, T. A. V. Rees, & N. Shah (Eds.), Algal and cyanobacterial biotechnology (pp. 294–316). Harlow: Longman.

    Google Scholar 

  • Chi, Z., O’Fallon, J. V., & Chen, S. (2011). Bicarbonate produced from carbon capture for algae culture. Trends in Biotechnology, 29, 537–541.

    Article  Google Scholar 

  • Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., et al. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy, 102, 101–111.

    Article  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  Google Scholar 

  • Chisti, Y. (2012). Raceways-based production of algal crude oil. In: C. Posten & C. Walter (Eds.), Microalgal biotechnology: Potential and production (pp. 113–146). de Gruyter, Berlin.

    Google Scholar 

  • Craggs, R., Park, J., Heubeck, S., & Sutherland, D. (2014). High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. New Zealand Journal of Botany, 52, 60–73.

    Google Scholar 

  • Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329–337.

    Article  Google Scholar 

  • Davison, I. R. (1991). Environmental effects on algal photosynthesis: Temperature. Journal of Phycology, 27, 2–8.

    Article  Google Scholar 

  • de Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., et al. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology, 153, 307–314.

    Article  Google Scholar 

  • Dodd, J. C. (1986). Elements of pond design and construction. In A. Richmond (Ed.), CRC handbook of microalgal mass culture (pp. 265–283). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Erkelens, M., Ball, A. S., & Lewis, D. M. (2014). The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond. Bioresource Technology, 157, 364–367.

    Article  Google Scholar 

  • García, J., Green, B. F., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., & Oswald, W. J. (2006). Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology, 97, 1709–1715.

    Article  Google Scholar 

  • Geider, R. J. (1987). Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytologist, 106, 1–34.

    Article  Google Scholar 

  • Goldman, J. C., & Carpenter, E. J. (1974). A kinetic approach to the effect of temperature on algal growth. Limnology and Oceanography, 19, 756–766.

    Article  Google Scholar 

  • Grima, E. M. (1999). Microalgae, mass culture methods. In M. C. Flickinger & S. W. Drew (Eds.), Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation (Vol. 3, pp. 1753–1769). New York: Wiley.

    Google Scholar 

  • Grobbelaar, J. U. (2000). Physiological and technical considerations for optimising algal cultures. Journal of Applied Phycology, 12, 201–206.

    Article  Google Scholar 

  • Grobbelaar, J. U., & Soeder, C. J. (1985). Respiration losses in planktonic green algae cultivated in raceway ponds. Journal of Plankton Research, 7, 497–506.

    Article  Google Scholar 

  • Hadiyanto, H., Elmore, S., Van Gerven, T., & Stankiewicz, A. (2013). Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chemical Engineering Journal, 217, 231–239.

    Article  Google Scholar 

  • Huang, J., Qu, X., Wan, M., Ying, J., Li, Y., Zhu, F., et al. (2015). Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. Algal Research, 10, 64–71.

    Article  Google Scholar 

  • James, C. M., Al-Hinty, S., & Salman, A. E. (1989). Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture, 77, 337–351.

    Article  Google Scholar 

  • James, S. C., & Boriah, V. (2010). Modeling algae growth in an open-channel raceway. Journal of Computational Biology, 17, 895–906.

    Article  MathSciNet  Google Scholar 

  • Lass, S., & Spaak, S. (2003). Chemically induced anti-predator defenses in plankton: a review. Hydrobiologia, 491, 221–239.

    Article  Google Scholar 

  • Lee, Y.-K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal Applied Phycology, 9, 403–411.

    Article  Google Scholar 

  • Li, Y., Zhang, Q., Wang, Z., Wu, X., & Cong, W. (2014). Evaluation of power consumption of paddle wheel in an open raceway pond. Bioprocess and Biosystems Engineering, 37, 1325–1336.

    Article  Google Scholar 

  • Liffman, K., Paterson, D. A., Liovic, P., & Bandopadhayay, P. (2013). Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chemical Engineering Research and Design, 91, 221–226.

    Article  Google Scholar 

  • Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Banks, C., et al. (2013a). Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy, 54, 267–275.

    Article  Google Scholar 

  • Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Heaven, S., et al. (2013b). Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology, 137, 188–195.

    Article  Google Scholar 

  • Moheimani, N. R., & Borowitzka, M. A. (2007). Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnology and Bioengineering, 96, 27–36.

    Article  Google Scholar 

  • Molina, E., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  Google Scholar 

  • Oswald, W. J. (1988). Large-scale algal culture systems (engineering concepts). In M. A. Borowitzka & L. J. Borowitzka (Eds.), Micro-algal biotechnology (pp. 357–394). Cambridge: Cambridge University Press.

    Google Scholar 

  • Prussi, M., Buffi, M., Casini, D., Chiaramonti, D., Martelli, F., Carnevale, M., et al. (2014). Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass and Bioenergy, 67, 390–400.

    Article  Google Scholar 

  • Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293.

    Article  Google Scholar 

  • Raes, E. J., Isdepsky, A., Muylaert, K., Borowitzka, M. A., & Moheimani, N. R. (2014). Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. Journal of Applied Phycology, 26, 247–255.

    Article  Google Scholar 

  • Raven, J. A., & Geider, R. J. (1988). Temperature and algal growth. New Phytologist, 110, 441–461.

    Article  Google Scholar 

  • Richmond, A. (1990). Large scale microalgal culture and applications. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (Vol. 7, pp. 269–330)., Biopress UK: Bristol.

    Google Scholar 

  • Shelp, B. J., & Canvin, D. T. (1980). Photorespiration and oxygen inhibition of photosynthesis in Chlorella pyrenoidosa. Plant Physiology, 65, 780–784.

    Article  Google Scholar 

  • Sing, S. S., Isdepsky, A., Borowitzka, M. A., & Lewis, D. M. (2014). Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production. Bioresource Technology, 161, 47–54.

    Article  Google Scholar 

  • Sompech, K., Chisti, Y., & Srinophakun, T. (2012). Design of raceway ponds for producing microalgae. Biofuels, 3, 387–397.

    Article  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  Google Scholar 

  • Sutherland, D. L., Turnbull, M. H., Broady, P. A., & Craggs, R. J. (2014a). Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency. Water Research, 61, 130–140.

    Google Scholar 

  • Sutherland, D. L., Turnbull, M. H., & Craggs, R. J. (2014b). Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Research, 53, 271–281.

    Article  Google Scholar 

  • Suzuki, K., & Ikawa, T. (1984). Effect of oxygen on photosynthetic 14CO2 fixation in Chroomonas sp. (Cryptophyta) I. Some characteristics of the oxygen effect. Plant and Cell Physiology, 25, 367–375.

    Google Scholar 

  • Terry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enyzme and Microbial Technology, 7, 474–487.

    Article  Google Scholar 

  • Tran, K. C., Mendoza Martin, J. L., Heaven, S., Banks, C. J., Acien Fernandez, F. G., & Molina, Grima E. (2014). Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway. Algal Research, 5, 95–102.

    Article  Google Scholar 

  • Turner, J. T., & Tester, P. A. (1997). Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography, 42, 1203–1214.

    Article  Google Scholar 

  • Van Donk, E., Ianora, A., & Vos, M. (2011). Induced defenses in marine and freshwater phytoplankton: A review. Hydrobiologia, 668, 3–19.

    Article  Google Scholar 

  • Van Etten, J. L., Lane, L. C., & Meints, R. H. (1991). Viruses and virus like particles of eukaryotic algae. Microbiology and Molecular Biology Reviews, 55, 586–620.

    Google Scholar 

  • Van Etten, J. L., & Meints, R. H. (1999). Giant viruses infecting algae. Annual Review of Microbiology, 53, 447–494.

    Google Scholar 

  • Weissman, J. C, Tillet, D. M., & Goebel, R. P. (1989). Design and operation of an outdoor microalgae test facility. Report SERI/STR-232-3569. Solar Energy Research Institute, Golden, CO.

    Google Scholar 

  • Wommack, K. E., & Colwell, R. R. (2000). Virioplankton: Viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 64, 69–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Chisti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chisti, Y. (2016). Large-Scale Production of Algal Biomass: Raceway Ponds. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics