Skip to main content

Graph-TSP from Steiner Cycles

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

Abstract

We present an approach for the traveling salesman problem with graph metric based on Steiner cycles. A Steiner cycle is a cycle that is required to contain some specified subset of vertices. For a graph \(G\), if we can find a spanning tree \(T\) and a simple cycle that contains the vertices with odd-degree in \(T\), then we show how to combine the classic “double spanning tree” algorithm with Christofides’ algorithm to obtain a TSP tour of length at most \(\frac{4n}{3}\). We use this approach to show that a graph containing a Hamiltonian path has a TSP tour of length at most \(4n/3\).

Since a Hamiltonian path is a spanning tree with two leaves, this motivates the question of whether or not a graph containing a spanning tree with few leaves has a short TSP tour. The recent techniques of Mömke and Svensson imply that a graph containing a depth-first-search tree with \(k\) leaves has a TSP tour of length \(4n/3 + O(k)\). Using our approach, we can show that a \(2(k-1)\)-vertex connected graph that contains a spanning tree with at most \(k\) leaves has a TSP tour of length \(4n/3\). We also explore other conditions under which our approach results in a short tour.

R. Ravi: Supported in part by NSF grants CCF1143998 and CCF1218382.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs (2011). arXiv preprint arXiv:1101.5586

  2. Aldred, R.E., Bau, S., Holton, D.A., McKay, B.D.: Cycles through 23 vertices in 3-connected cubic planar graphs. Graphs Comb. 15(4), 373–376 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, vol. 290. Macmillan, London (1976)

    MATH  Google Scholar 

  4. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on cubic and subcubic graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 65–77. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)

    Google Scholar 

  6. Chvatal, V.: New directions in Hamiltonian graph theory. In: Harary, F. (ed.) New Directions in Graph Theory. Academic press, London (1973)

    Google Scholar 

  7. Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discrete Math. 2(2), 111–113 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer polyhedra. Math. program. 33(1), 1–27 (1985)

    Article  MATH  Google Scholar 

  9. Dirac, G.: Some theorems on abstract graphs. Proce. Lond. Math. Soc. 3(1), 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  10. Dirac, G.: Short proof of Menger’s graph theorem. Mathematika 13(1), 42–44 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fournier, I.: Cycles et numérotations de graphes. These d’Etat, LRI, Université de Paris-Sud (1985)

    Google Scholar 

  12. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 550–559. IEEE (2011)

    Google Scholar 

  13. González, J.J.S.: The Steiner cycle polytope. Eur. J. Oper. Res. 147(3), 671–679 (2003)

    Article  MATH  Google Scholar 

  14. Gupta, S.: Towards a \(\frac{4}{3}\)-approximation for the metric traveling salesman problem. Master’s thesis, Indian Institute of Technology, Delhi, May 2011

    Google Scholar 

  15. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28(4), 422–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holton, D.A., McKay, B.D., Plummer, M.D., Thomassen, C.: A nine point theorem for 3-connected graphs. Combinatorica 2(1), 53–62 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoogeveen, J.: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    MathSciNet  MATH  Google Scholar 

  19. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 560–569 (2011)

    Google Scholar 

  20. Mucha, M.: \(\frac{13}{9}\)-approximation for graphic TSP. Theory Comput. Syst. 1–18 (2012)

    Google Scholar 

  21. Ozeki, K., Yamashita, T.: A degree sum condition concerning the connectivity and the independence number of a graph. Graphs Comb. 24(5), 469–483 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs (2012). arXiv preprint arXiv:1201.1870

  24. Shi, R.: 2-neighborhoods and Hamiltonian conditions. J. Graph Theory 16(3), 267–271 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steinová, M.: Approximability of the minimum Steiner cycle problem. Comput. Inf. 29(6+), 1349–1357 (2012)

    Google Scholar 

  26. Vishnoi, N.K.: A permanent approach to the traveling salesman problem. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 76–80. IEEE (2012)

    Google Scholar 

  27. Zamfirescu, T.: Three small cubic graphs with interesting Hamiltonian properties. J. Graph Theory 4(3), 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alantha Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Iwata, S., Newman, A., Ravi, R. (2014). Graph-TSP from Steiner Cycles. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics