Skip to main content

Polymers in Oncology

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Over the past decade nanoparticulate polymers has been established both in pharmaceutical and in clinical research. These kinds of systems are expected to stay in the blood for long time and accumulate in pathological sites with affected and leaky vasculature, such as tumors or inflammatory areas, via the enhanced permeability and retention (EPR) effect, facilitating targeted delivery of specific drugs and genes into poorly accessible areas. Moreover, minimally invasive cancer biomarkers are greatly required for routine clinical practice, for example to deliver hydrophobic imaging agents. Finally, in the last years nano-scaled polymeric systems able to combine both therapy and imaging were designed and developed in a new research field that is called theranostics (or theragnostics). This chapter summarizes the different kinds of polymeric systems used to synthesize therapeutic, diagnostic and theranostic agents in cancer treatment with particular attention to nanoparticulate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMV:

Cytomegalovirus

DDS:

Drug delivery systems

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10- tetrakisacetic acid

DOX:

Doxorubicin

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

FA:

Folic acid

GOx:

Glucose oxidase

HPMA:

N-(2-hydroxypropyl)methacrylamide

LCST:

Lower critical solution temperature

LHRH:

Luteinizing hormone-releasing hormone

MMA:

Methyl methacrylate

MMP:

Matrix metalloproteinase

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

NBA:

O-nitrobenzyl acrylate

NIPAAM:

N-isopropylacrylamide

NIR:

Near-infrared

NIRF:

Near-infrared fluorescence

NIS:

Sodium iodide symporter

OEGMA:

Oligo(ethylene glycol) monomethyl ether methacrylate

P(AA/MAA):

Poly(acrylic/methacrylic acid)

Pc:

Phthalocyanines

PCL:

Poly(ε-caprolactone)

PcSi-(OH)(mob):

Monosubstituted phthalocyanine

PDT:

Photodynamic therapy

PEG:

Poly(ethylene glycol)

PEG-A:

Poly(ethyleneglycol)monoacrylate

PEGMEM:

Peg methyl ether methacrylate

PEG-PPS-PEG:

Peg-β-poly(propylene sulfide)-β–peg

PEGPTMBPEC:

Peg-β-poly(2,4,6-trimethoxybenzylidenepentaerythritol carbonate)

PLA:

Polylactic acid

PNIPAAM:

Poly(N-isopropylacrylamide)

PPI G4:

Generation 4 polypropylenimine

PPS:

Poly(propylene sulfide)

Ps:

Polymersome

PTX:

Paclitaxel

QDs:

Quantum dots

RF:

Radio-frequency

SPIONs:

Superparamagnetic iron oxide nanoparticles

TNPs:

Theranostic nanoparticles

VP:

N-vinyl-2-pyrrolidone

References

  1. Wang, M., Thanou, M.: Targeting nanoparticles to cancer. Pharmacol. Res. 62, 90–99 (2010)

    Article  CAS  Google Scholar 

  2. Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)

    Article  CAS  Google Scholar 

  3. Srinivas, P.R., Barker, P., Srivastava, S.: Nanotechnology in early detection of cancer. Lab. Investig. 82, 657–662 (2002)

    Article  Google Scholar 

  4. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hor, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 65, 271–284 (2000)

    Article  CAS  Google Scholar 

  5. Greish, K.: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010)

    Article  CAS  Google Scholar 

  6. Dong, Y.C., Feng, S.S.: Nanoparticles of montmorillonite (mmt)/poly (d,l-lactide-co-glycolide) (plga) for oral delivery of anticancer drugs. Biomaterials 26, 6068–6076 (2005)

    Article  CAS  Google Scholar 

  7. Chawla, J.S., Amiji, M.M.: Biodegradable poly (ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249, 127–138 (2002)

    Article  CAS  Google Scholar 

  8. Farokhzad, O.C., Langer, R.: Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Delivery Rev. 58, 1456–1459 (2006)

    Article  CAS  Google Scholar 

  9. Langer, R., Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487 (2004)

    Article  CAS  Google Scholar 

  10. Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46, 6387–6392 (1986)

    CAS  Google Scholar 

  11. Kong, G., Braun, R.D., Dewhirst, M.W.: Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 60, 4440–4445 (2000)

    CAS  Google Scholar 

  12. Yuan, F., Leunig, M., Huang, S.K., Berk, D.A., Papahadjopoulos, D., Jain, R.K.: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54, 3352–3356 (1994)

    CAS  Google Scholar 

  13. Engin, K., Leeper, D.B., Cater, J.R., Thistlethwaite, A.J., Tupchong, L., Mcfarlane, J.D.: Extracellular pH distribution in human tumours. Int. J. Hyperthermia 11, 211–216 (1995)

    Article  CAS  Google Scholar 

  14. Thistlethwaite, A.J., Leeper, D.B., Moylan, D.J., Nerlinger, R.E.: pH distribution in human tumors. Int. J. Radiat. Oncol. Biol. Phys. 11, 1647–1652 (1985)

    Article  CAS  Google Scholar 

  15. Sun, H.H., Andresen, T.L., Benjaminsen, R.V., Almdal, K.: Polymeric nanosensors for measuring the full dynamic ph range of endosomes and lysosomes in mammalian cells. J. Biomed. Nanotechnol. 5, 676–682 (2009)

    Article  CAS  Google Scholar 

  16. Schafer, F.Q., Buettner, G.R.: Redox state of the cell as viewed through the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212 (2001)

    Article  CAS  Google Scholar 

  17. Andresen, T.L., Jensen, S.S., Jørgensen, K.: Advanced strategies in liposomal cancer therapy: problems and prospects of active and human specific drug release. Prog. Lipid Res. 44, 68–97 (2005)

    Article  CAS  Google Scholar 

  18. Patri, A.K., Majoros, I.J., Baker, J.R.: Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 6, 466–471 (2002)

    Article  CAS  Google Scholar 

  19. Tomalia, D.A., Uppuluri, S., Swanson, D.R., Brothers, H.M., Piehler, L.T., Li, J., Meier, D.J., Hagnauer, G.L., Balogh, L.: Dendritic macromolecules: a fourth major class of polymer architecture—new properties driven by architecture. Mater. Res. Soc. Symp. P 543, 289–298 (1999)

    Article  CAS  Google Scholar 

  20. Hawker, C.J., Frechet, J.M.J.: Preparation of polymers with controlled molecular architecture. a new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990)

    Article  CAS  Google Scholar 

  21. Ihre, H.R., Padilla De Jesús, O.L., Szoka, F.C., Fréchet, J.M.: Polyester dentritic systems for drug delivery applications: design, synthesis and characterization. Bioconjugate Chem. 13, 443–452 (2002)

    Article  CAS  Google Scholar 

  22. Lee, C.C., Gillies, E.R., Fox, M.E., Guillaudeu, S.J., Fréchet, J.M., Dy, E.E., Szoka, F.C.: A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. U.S.A. 103, 16649–16654 (2006)

    Article  CAS  Google Scholar 

  23. Gillies, E.R., Dy, E., Fréchet, J.M.J., Szoka, F.C.: Biological evaluation of polyester dendrimers: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm. 2, 129–138 (2005)

    Article  CAS  Google Scholar 

  24. Gillies, E.R., Fréchet, J.M.J.: Designing macromolecules for therapeutic applications polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc. 124, 14137–14146 (2002)

    Article  CAS  Google Scholar 

  25. Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., Maitra, A.: Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J. Nanobiotech. 5, 3 (2007)

    Article  Google Scholar 

  26. Siegel, R.A.: Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. Adv. Polym. Sci. 109, 233–267 (1993)

    Article  CAS  Google Scholar 

  27. Das, M., Mardyani, S., Chan, W.C.W., Kumacheva, E.: Biofunctionalized pH-responsive microgel for cancer cell targeting. Adv. Mater. 18, 80–83 (2006)

    Article  CAS  Google Scholar 

  28. Kihara, N., Adachi, Y., Nakao, K., Fukutomi, T.: Reaction of methyl thioglycolate with chloromethylstyrene microgel: preparation of core–shell-type microgel by chemical modification. J. Appl. Polym. Sci. 69, 1863–1873 (1998)

    Article  CAS  Google Scholar 

  29. Beng, H.T., Palaniswamy, R., Kam, C.T.: Poly(L-lysine-g-ethylene glycol)/oligo(lactic acid)-b-pluronic F127-b-oligo(lactic acid) nanogels. Macromol. Rapid Commun. 27, 522–528 (2006)

    Article  Google Scholar 

  30. Gong, J., Chen, M., Zheng, Y., Wang, S., Wang, Y.: Polymeric micelles drug delivery system in oncology. J. Controlled Release 159, 312–323 (2012)

    Article  CAS  Google Scholar 

  31. Torchilin, V.: Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63, 131–135 (2011)

    Article  CAS  Google Scholar 

  32. Sutton, D., Nasongkla, N., Blanco, E., Gao, J.: Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 24, 1029–1046 (2007)

    Article  CAS  Google Scholar 

  33. Du, J.Z., O’Reilly, R.K.: Advances and challenges insmart and functional polymer vesicles. Soft Matter 5, 3544–3561 (2009)

    Article  CAS  Google Scholar 

  34. Meng, F., Zhong, Z.: Polymersomes spanning from nano- to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J. Phys. Chem. Lett. 2, 1533–1539 (2011)

    Article  CAS  Google Scholar 

  35. Pangburn, T.O., Petersen, M.A., Waybrant, B., Adil, M.M., Kokkoli, E.: Peptide- and aptamer-functionalized nanovectors for targeted delivery of therapeutics. J. Biomech. Eng. Trans. ASME 131, 1–20 (2009)

    Article  Google Scholar 

  36. Kim, K.T., Meeuwissen, S.A., Nolte, R.J.M., van Hest, J.C.M.: Smart nanocontainers and nanoreactors. Nanoscale 2, 844–858 (2010)

    CAS  Google Scholar 

  37. Liu, G., Ma, S., Li, S., Cheng, R., Meng, Liu H., Zhong, Z.: The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersome. Biomaterials 31, 7575–7585 (2010)

    Article  CAS  Google Scholar 

  38. Ahmed, F., Pakunlu, R.I., Brannan, A., Bates, F., Minko, T., Discher, D.E.: Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control Release 116, 150–158 (2006)

    Article  CAS  Google Scholar 

  39. Chen, W., Meng, F.H., Cheng, R., Zhong, Z.Y.: pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J. Controlled Release 142, 40–46 (2010)

    Article  CAS  Google Scholar 

  40. Battaglia, G., Ryan, A.J.: Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc. 127, 8757–8764 (2005)

    Article  CAS  Google Scholar 

  41. Lomas, H., Massignani, M., Abdullah, K.A., Canton, I., Lo Presti, C., MacNeil, S., Du, J.Z., Blanazs, A., Madsen, J., Armes, S.P., Lewis, A.L., Battaglia, G.: Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 139, 143–159 (2010)

    Article  Google Scholar 

  42. Massignani, M., Lomas, H., Battaglia, G.: Polymersomes: a synthetic biological approach to encapsulation and delivery. Mod. Tech. Nano. Microreact. React. 229, 115–154 (2010)

    Article  CAS  Google Scholar 

  43. Saylor, D.M., Kim, C.S., Patwardhan, D.V., Warren, J.A.: Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. Acta Biomater. 3, 851–864 (2007)

    Article  CAS  Google Scholar 

  44. Bodor, N.: Redox drug delivery systems for targeting drugs to the brain. Ann. N. Y. Acad. Sci. 507, 289–306 (1987)

    Article  CAS  Google Scholar 

  45. Corti, A., Duarte, T.L., Paolicchi, A., Dominici, S., Jones, G.D.D., Dilda, P., Hogg, P.J., Pompella, A.: Gamma-glutamyltransferase of cancer cells at the crossroads of redox regulation, tumor progression, drug resistance and drug targeting. Anticancer Res. 28, 3451–3452 (2008)

    Google Scholar 

  46. Tew, K.D., Ali-Osman, F.: Redox pathways in cancer drug discovery. Curr. Opin. Pharmacol. 7, 353–354 (2007)

    Article  CAS  Google Scholar 

  47. Grundl, T.: A review of the current understanding of redox capacity in natural, disequilibrium systems. Chemosphere 28, 613–626 (1994)

    Article  CAS  Google Scholar 

  48. Napoli, A., Boerakker, M.J., Tirelli, N., Nolte, R.J.M., Sommerdijk, N.A.J.M., Hubbell, J.A.: Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 20, 3487–3491 (2004)

    Article  CAS  Google Scholar 

  49. Cerritelli, S., Velluto, D., Hubbell, J.A.: PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 8, 1966–1972 (2007)

    Article  CAS  Google Scholar 

  50. Park, K., Lee, S., Kang, E., Kim, K., Choi, K., Kwon, I.: New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 19, 1553–1566 (2009)

    Article  CAS  Google Scholar 

  51. Sato, N., Kobayashi, H., Hiraga, A., Saga, T., Togashi, K., Konishi, J., Brechbiel, M.W.: Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn. Reson. Med. 46, 1169–1173 (2001)

    Article  CAS  Google Scholar 

  52. Minchin, R.F., Martin, D.J.: Minireview: nanoparticles for molecular imaging-an overview. Endocrinology 151, 474–481 (2010)

    Article  CAS  Google Scholar 

  53. Bhalgat, M.K., Haugland, R.P., Pollack, J.S., Swan, S., Haugland, R.P.: Green- and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry. J. Immunol. Methods 219, 57–68 (1998)

    Article  CAS  Google Scholar 

  54. Weissleder, R., Tung, C.H., Mahmood, U., Bogdanov Jr, A.: In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999)

    Article  CAS  Google Scholar 

  55. Canfarotta, F., Whitcombe, M.J., Piletsky, S.A.: Polymeric nanoparticles for optical sensing. Biotechnol. Adv. 31, 1585–1599 (2013)

    Article  CAS  Google Scholar 

  56. Mulder, W.J.M., Castermans, K., Van Beijnum, J.R., Oude Egbrink, M.G.A., Chin, P.T.K., Fayad, Z.A.: Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots. Angiogenesis 12, 17–24 (2009)

    Article  CAS  Google Scholar 

  57. Yang, Z., Zheng, S., Harrison, W.J., Harder, J., Wen, X., Gelovani, J.G., et al.: Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 8, 3422–3428 (2007)

    Article  CAS  Google Scholar 

  58. Lee, S., Ryu, J.H., Park, K., Lee, A., Lee, S.Y., Youn, I.C., et al.: Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo. Nano. Lett. 9, 4412–4416 (2009)

    Article  CAS  Google Scholar 

  59. Hong, G., Yuan, R., Liang, B., Shen, J., Yang, X., Shuai, X.: Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed. Microdevices 10, 693–700 (2008)

    Article  CAS  Google Scholar 

  60. Suen, W.L.L., Chau, Y.: Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epitheliumcells enhances and prolongs antiangiogenic activity. J Control Release 167, 21–28 (2013)

    Article  CAS  Google Scholar 

  61. Yoo, M.K., Park, I.K., Lim, H.T., Lee, S.J., Jiang, H.L., Kim, Y.K., Choi, Y.J., Cho, M.H., Cho, C.S.: Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater. 8, 3005–3013 (2008)

    Article  Google Scholar 

  62. Rowe, M.D., Tham, D.H., Kraft, S.L., Boyes, S.G.: Polymer-modified gadolinium metal–organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10, 983–993 (2009)

    Article  CAS  Google Scholar 

  63. Zhang, L., Xue, H., Gao, C., Carr, L., Wang, J., Chu, B., Jiang, S.: Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 31, 6582–6588 (2010)

    Article  CAS  Google Scholar 

  64. Chen, G., Chen, W., Wu, Z., Yuan, R., Li, H., Gao, J., Shuai, X.: MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30, 1962–1970 (2009)

    Article  CAS  Google Scholar 

  65. Krasia-Christoforou, T., Georgiou, T.K.: Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J. Mater. Chem. B 1, 3002–3025 (2013)

    Article  CAS  Google Scholar 

  66. Bhojani, M.S., Van Dort, M., Rehemtulla, A., Ross, B.D.: Targeted imaging and therapy of brain cancer using theragnostic nanoparticles. Mol. Pharm. 7, 1921–1929 (2010)

    Article  CAS  Google Scholar 

  67. Ho, Y.P., Leong, K.W.: Quantum dot-based theranostics. Nanoscale 2, 60–68 (2010)

    Article  CAS  Google Scholar 

  68. Shubayev, V.I., Pisanic, T.R., Jin, S.: Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61, 467–477 (2009)

    Article  CAS  Google Scholar 

  69. Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharmaceutics 7, 1899–1912 (2010)

    Article  CAS  Google Scholar 

  70. Payne, C.K.: Imaging gene delivery with fluorescence microscopy. Nanomedicine 2, 847–860 (2007)

    Article  CAS  Google Scholar 

  71. Juzenas, P., Chen, W., Sun, Y.P., Coelho, M.A.N., Generalov, R., Generalova, N., Christensen, I.L.: Quantum dots and nanoparticles for photodynamic and radiation therapy of cancer. Adv. Drug. Deliv. Rev. 60, 1600–1614 (2008)

    Google Scholar 

  72. Lammers, T.: Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. Adv. Drug Deliv. Rev. 62, 203–230 (2010)

    Article  CAS  Google Scholar 

  73. Pike, D.B., Ghandehari, H.: HPMA copolymer-cyclic RGD conjugates for tumor targeting. Adv. Drug Deliv. Rev. 62, 67–183 (2010)

    Article  Google Scholar 

  74. Pola, R., Studenovsky, M., Pechar, M., Ulbrich, K., Hovorka, O., Vetvicka, D., Rihova, B.: HPMA-copolymer conjugates targeted to tumor endothelium using synthetic oligopeptides. J. Drug Target 17, 763–776 (2009)

    Article  CAS  Google Scholar 

  75. Lammers, T., Ulbrich, K.: HPMA copolymers: 30 years of advances. Adv. Drug Deliv. Rev. 62, 119–121 (2010)

    Article  CAS  Google Scholar 

  76. Kopecek, J., Kopeckova, P.: HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 62, 122–149 (2010)

    Article  CAS  Google Scholar 

  77. Wang, Y., Ye, F., Jeong, E.K., Sun, Y., Parker, D.L., Lu, Z.R.: Noninvasive visualization of pharmacokinetics, biodistribution and tumor targeting of poly[n-(2-hydroxypropyl) methacrylamide] in mice using contrast enhanced mri. Pharm. Res. 24, 1208–1216 (2007)

    Article  CAS  Google Scholar 

  78. Ferber, S., Baabur-Cohen, H., Blau, R., Epshtein, Y., Kisin-Finfer, E., Redy, O., Shabat, D., Satchi-Fainaro, R.: Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release. Cancer Lett. Article (2014 in press)

    Google Scholar 

  79. Frechet, J.M.J.: Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263, 1710–1715 (1994)

    Article  CAS  Google Scholar 

  80. Wolinsky, J.B., Grinstaff, M.W.: Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev. 60, 1037–1055 (2008)

    Article  CAS  Google Scholar 

  81. Shi, X.G., Wang, S.H., Meshinchi, S., Van Antwerp, M.E., Bi, X., Lee, I., Baker, J.R.: Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 3, 1245–1252 (2007)

    Article  CAS  Google Scholar 

  82. Wiener, E.C., Brechbiel, M.W., Brothers, H., Magin, R.L., Gansow, O.A., Tomalia, D.A., Lauterbur, P.C.: Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31, 1–8 (1994)

    Article  CAS  Google Scholar 

  83. Taratula, O., Schumann, C., Naleway, M.A., Pang, A.J., Chon, K.J., Taratula, O.: A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharmaceutics 10, 3946–3958 (2013)

    CAS  Google Scholar 

  84. Grünwald, G.K., Vetter, A., Klutz, K., Willhauck, M.J., Schwenk, N., Senekowitsch-Schmidtke, R., Schwaiger, M., Zach, C., Wagner, E., Göke, B., Holm, P.S., Ogris, M., Spitzweg, C.: Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J. Nucl. Med. 54, 1450–1457 (2013)

    Article  Google Scholar 

  85. Kim, J.I., Lee, B.S., Chun, C., Cho, J.K., Kim, S.Y., Song, S.C.: Long-term theranostic hydrogel system for solid tumors. Biomaterials 33, 2251–2259 (2012)

    Article  CAS  Google Scholar 

  86. Jaiswal, M.K.I., De, M., Chou, S.S., Vasavada, S., Bleher, R., Prasad, P.V., Bahadur, D., Dravid, V.P.: Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl. Mater. Interfaces 6, 6237–6247 (2014)

    Article  CAS  Google Scholar 

  87. Murali, R., Vidhya, P., Thanikaivelan, P.: Thermoresponsive magnetic nanoparticle – Aminated guar gumhydrogel system for sustained release of doxorubicin hydrochloride. Carbohydr. Polym. 110, 440–445 (2014)

    Article  CAS  Google Scholar 

  88. Janib, S.M., Moses, A.S., MacKay, J.A.: Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010)

    Article  CAS  Google Scholar 

  89. Kumar, R., Kulkarni, A., Nagesha, D.K., Sridhar, S.: In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2, 714–722 (2012)

    Article  CAS  Google Scholar 

  90. Li, Y.I., Qian, Y., Liu, T., Zhang, G., Liu, S.: Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Biomacromolecules 13, 3877–3886 (2012)

    Article  CAS  Google Scholar 

  91. Liu, T., Qian, Y., Hu, X., Ge, Z., Liu, S.: Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery. J. Mater. Chem. 22, 5020–5030 (2012)

    Article  CAS  Google Scholar 

  92. Chiang, W.H., Huang, W.C., Chang, C.W., Shen, M.Y., Shih, Z.F., Huang, Y.F., Lin, S.C., Chiu, H.C.: Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J. Controlled Release 168, 280–288 (2013)

    Article  CAS  Google Scholar 

  93. Oliveira, H., Pérez-Andrés, E., Thevenot, J., Sandre, O., Berra, E., Lecommandoux, S.: Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Controlled Release 169, 165–170 (2013)

    Article  CAS  Google Scholar 

  94. Pangburn, T.O., Georgiou, K., Bates, F.S., Kokkoli, E.: Targeted polymersome delivery of sirna induces cell death of breast cancer cells dependent upon orai3 protein expression. Langmuir 28, 12816–12830 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Curcio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Curcio, M., Parisi, O.I., Puoci, F. (2015). Polymers in Oncology. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_10

Download citation

Publish with us

Policies and ethics