Skip to main content

Molecular Communication Technology: General Considerations on the Use of Synthetic Cells and Some Hints from In Silico Modelling

  • Conference paper
  • First Online:
Advances in Artificial Life and Evolutionary Computation (WIVACE 2014)

Abstract

Recent advancements in synthetic biology pave the way to the design and construction of synthetic cells of increasing complexity, capable of performing specific functions in programmable manner. One of the most exciting goal is the development of a molecular communication technology based on the exchange of chemical signals between synthetic and natural cells. We are currently involved in such a research program. Following our previous contributions to WIVACE workshops (2012–2013), here we present the project, and discuss some general considerations on the use of synthetic cells for developing novel bio-chemical Information and Communication Technologies (bio-chem-ICTs). Moreover, by analysing in detail a mathematical model of synthetic cell/natural cell communication process, we provide some hints that can be valuable for the next experimental steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)

    Article  Google Scholar 

  2. Baldwin, G., Bayer, T., Dickinson, R., Ellis, T., Freemont, P.S., Kitney, R.I., Polizzi, K., Stan, G.B.: Synthetic Biology. A Primer. Imperial College Press, London (2012)

    Google Scholar 

  3. Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)

    Article  Google Scholar 

  4. Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems 109, 24–34 (2012)

    Article  Google Scholar 

  5. Rampioni, G., Damiano, L., Messina, M., D’Angelo, F., Leoni, L., Stano, P.: Chemical communication between synthetic and natural cells: a possible experimental design. Electr. Proc. Theor. Comput. Sci. 130, 14–26 (2013)

    Article  Google Scholar 

  6. Rampioni, G., Mavelli, F., Damiano, L., D’Angelo, F., Messina, M., Leoni, L., Stano, P.: A synthetic biology approach to bio-chem-ICT: first moves towards chemical communication between synthetic and natural cells. Nat. Comput. (2014). doi:10.1007/s11047-014-9425-x

  7. Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies. Studies in Computational Intelligence, pp. 49–86. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Amos, M., Dittrich, P., McCaskill, J., Rasmussen, S.: Biological and chemical information technologies. Proc. Comput. Sci. 7, 56–60 (2011)

    Article  Google Scholar 

  9. Nakano, T., Eckford, A.W., Haraguchi, T.: Molecular Communications. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  10. Leduc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2, 3–7 (2007)

    Article  Google Scholar 

  11. Damiano, L., Hiolle, A., Cañamero, L.: Grounding synthetic knowledge. In: Lenaerts, T., et al. (eds.) Advances in Artificial Life - ECAL 2011, pp. 200–207. MIT Press, Cambridge (2011)

    Google Scholar 

  12. Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1, 377–383 (2009)

    Article  Google Scholar 

  13. Stano, P., Kuruma, Y., Souza, T.P., Luisi, P.L.: Biosynthesis of proteins inside liposomes. Methods Mol. Biol. 606, 127–145 (2010)

    Article  Google Scholar 

  14. Stano, P., Carrara, P., Kuruma, Y., Souza, T., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21, 18887–18902 (2011)

    Article  Google Scholar 

  15. Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003)

    Article  Google Scholar 

  16. Carrara, P., Stano, P., Luisi, P.L.: Giant vesicles “colonies”: a model for primitive cell communities. ChemBioChem 13, 1497–1502 (2012)

    Article  Google Scholar 

  17. Grotzky, A., Altamura, E., Adamcik, J., Carrara, P., Stano, P., Mavelli, F., Nauser, T., Mezzenga, R., Schlüter, A.D., Walde, P.: Structure and enzymatic properties of molecular dendronized polymer-enzyme conjugates and their entrapment inside giant vesicles. Langmuir 29, 10831–10840 (2013)

    Article  Google Scholar 

  18. Cabré, E.J., Sánchez-Gorostiaga, A., Carrara, P., Ropero, N., Casanova, M., Palacios, P., Stano, P., Jiménez, M., Rivas, G., Vicente, M.: Bacterial division proteins induce vesicle collapse and cell membrane invagination. J. Biol. Chem. 288, 26625–26634 (2013)

    Article  Google Scholar 

  19. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., Ueda, T.: Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2011)

    Article  Google Scholar 

  20. Kuruma, Y., Stano, P., Ueda, T., Luisi, P.L.: A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta 1788, 567–574 (2009)

    Article  Google Scholar 

  21. Waters, C.M., Bassler, B.L.: Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346 (2005)

    Article  Google Scholar 

  22. West, S.A., Griffin, A.S., Gardner, A., Diggle, S.P.: Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006)

    Article  Google Scholar 

  23. Williams, P., Winzer, K., Chan, W.C., Cámara, M.: Look who’s talking: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. Lond. Biol. Sci. 362, 1119–1134 (2007)

    Article  Google Scholar 

  24. Atkinson, S., Williams, P.: Quorum sensing and social networking in the microbial world. J. R. Soc. Interf. 6, 959–978 (2009)

    Article  Google Scholar 

  25. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enamoto, A., Moore, M., Nakano, T.: Molecular communications. In: Proceedings of the 2005 NSTI Nanotechnology Conference, pp. 391–394 (2005)

    Google Scholar 

  26. Noiureaxu, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA 101, 17669–17674 (2004)

    Article  Google Scholar 

  27. Choi, H.J., Montemagno, C.D.: Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 5, 2538–2542 (2005)

    Article  Google Scholar 

  28. Paleos, C.M., Tsiourvas, D., Sideratou, Z., Pantos, A.: Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J. Control. Rel. 170, 141–152 (2013)

    Article  Google Scholar 

  29. Chandrawati, R., Caruso, F.: Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28, 13798–13807 (2012)

    Article  Google Scholar 

  30. Shin, J., Noireaux, V.: An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 29–41 (2012)

    Article  Google Scholar 

  31. Mavelli, F.: Stochastic simulations of minimal cells: the Ribocell model. BMC Bioinf. 13, S10 (2010)

    Article  Google Scholar 

  32. Stano, P., Souza, T., Carrara, P., Altamura, E., D’Aguanno, E., Caputo, M., Luisi, P.L., Mavelli, F.: Recent biophysical issues about the preparation of solute-filled lipid vesicles. Mech. Adv. Mater. Struct. doi:10.1080/15376494.2013.857743

  33. Stögbauer, T., Windhager, L., Zimmer, F., Rädler, J.O.: Experiment and mathematical modeling of gene expression dynamics in a cell-free system. Integr. Biol. 4, 494–501 (2012)

    Article  Google Scholar 

  34. Sunami, T., Hosoda, K., Suzuki, H., Matsuura, T., Yomo, T.: Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir 26, 8544–8551 (2010)

    Article  Google Scholar 

  35. Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E., Greenberg, E.P.: Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96, 4360–4365 (1999)

    Article  Google Scholar 

  36. Pearson, J.P., Van Delden, C., Iglewski, B.H.: Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181, 1203–1210 (1999)

    Google Scholar 

  37. Ullrich, M., Hanuš, J., Dohnal, J., Štěpánek, F.: Encapsulation stability and temperature-dependent release kinetics from hydrogel-immobilised liposomes. J. Colloid Interface Sci. 394, 380–385 (2013)

    Article  Google Scholar 

  38. Mavelli, F., Stano, P.: Kinetic models for autopoietic chemical systems: role of fluctuations in homeostatic regime. Phys. Biol. 7, 016010 (2010)

    Article  Google Scholar 

  39. Lentini, R., Santero, S.P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., Del Bianco, C., Terrell, J.L., Spencer, A.C., Martini, L., Forlin, M., Assfalg, M., Dalla Serra, M., Bentley, W.E., Mansy, S.S.: Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014)

    Google Scholar 

Download references

Acknowledgements

The in silico model here presented has been recently published, with a more extensive discussion, in [6]. The authors thank Pier Luigi Luisi (Roma Tre University) for inspiring discussions on synthetic minimal cells. F.M. and P.S. acknowledge the support through the COST Action CM1304 (Emergence and Evolution of Complex Chemical Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Stano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mavelli, F., Rampioni, G., Damiano, L., Messina, M., Leoni, L., Stano, P. (2014). Molecular Communication Technology: General Considerations on the Use of Synthetic Cells and Some Hints from In Silico Modelling. In: Pizzuti, C., Spezzano, G. (eds) Advances in Artificial Life and Evolutionary Computation. WIVACE 2014. Communications in Computer and Information Science, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-12745-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12745-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12744-6

  • Online ISBN: 978-3-319-12745-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics