Skip to main content

Neural Vulnerability Factors that Increase Risk for Weight Gain: Prevention and Treatment Implications

  • Chapter
  • First Online:
Molecular Mechanisms Underpinning the Development of Obesity
  • 771 Accesses

Abstract

Obese versus lean humans show greater activation of reward valuation regions (caudate, amygdala, orbitofrontal cortex [OFC], insula) in response to palatable food images and to cues that signal impending palatable food receipt. Although this elevated responsivity theoretically results from conditioned associations between reward from palatable food and cues that signal impending palatable food receipt (the incentive sensitization theory), elevated amygdala response to palatable food images, nucleus accumbens response to palatable food images, OFC response to cues that predict palatable food image presentation, and striatal response to palatable food commercials predict future weight gain. These data suggest that elevated reward region responsivity to food cues trigger cravings that drive overeating. One prevention implication is that reducing intake of energy dense food should attenuate the conditioning process that gives rise to the hyper-responsivity of reward regions to food cues. Emerging evidence also suggests that thinking of the long-term health costs of eating unhealthy foods reduces reward region response to food cues, increases activation of inhibitory regions to food cues, and attenuates cravings, implying that prevention and treatment interventions should include cognitive reappraisal training. A pilot trial revealed that an intervention that trained young adults to apply cognitive reappraisals when confronted with unhealthy foods resulted in increased responsivity of a region implicated in inhibitory control and decreased responsivity of a region implicated in attention and expectation in response to palatable food images, but produced only pre-post reductions in body fat relative to participants in an obesity education control condition that did not persist over follow-up. It may be possible to use real time fMRI biofeedback to increase the effects of the cognitive reappraisal obesity prevention program. Yet obese versus lean adults also show less striatal D2 receptor availability, lower capacity of nigrostriatal neurons to synthesize dopamine, and weaker striatal activation (caudate, putamen) in response to high-fat/high-sugar food intake. Although animal experiments indicate that overfeeding results in reduced sensitivity of reward regions to food intake and pharmacologic stimulation, echoing effects from prospective weight gain studies with humans, individuals may overeat to compensate for an inborn or acquired reward deficit. Our pilot obesity prevention trial also encouraged participant-driven reductions dietary fat and sugar intake, but we did not find evidence of pre-post increases in reward region response to palatable beverages. Continued effort to translate neuroscience findings into obesity prevention and treatment interventions may yield more effective interventions for this pernicious public health problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307(5):491–497

    Article  PubMed  Google Scholar 

  2. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W (2009) Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood) 28(5):w822–831

    Article  Google Scholar 

  3. Flegal KM, Graubard BI, Williamson DF, Gail MH (2005) Excess deaths associated with underweight, overweight, and obesity. JAMA 293(15):1861–1867

    Article  CAS  PubMed  Google Scholar 

  4. Stice E, Shaw H, Marti CN (2006) A meta-analytic review of obesity prevention programs for children and adolescents: the skinny on interventions that work. Psychol Bull 132(5):667–691

    Article  PubMed Central  PubMed  Google Scholar 

  5. Turk MW, Yang K, Hravnak M, Sereika SM, Ewing LJ, Burke LE (2009) Randomized clinical trials of weight loss maintenance: a review. J Cardiovasc Nurs 24(1):58–80

    Article  PubMed Central  PubMed  Google Scholar 

  6. Haines J, Neumark-Sztainer D, Wall M, Story M (2007) Personal, behavioral, and environmental risk and protective factors for adolescent overweight. Obesity (Silver Spring) 15(11):2748–2760

    Article  Google Scholar 

  7. Salbe AD, DelParigi A, Pratley RE, Drewnowski A, Tataranni PA (2004) Taste preferences and body weight changes in an obesity-prone population. Am J Clin Nutr 79(3):372–378

    CAS  PubMed  Google Scholar 

  8. Stice E, Presnell K, Shaw H, Rohde P (2005) Psychological and behavioral risk factors for obesity onset in adolescent girls: a prospective study. J Consult Clin Psychol 73(2):195–202

    Article  PubMed  Google Scholar 

  9. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH (1997) Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337(13):869–873

    Article  CAS  PubMed  Google Scholar 

  10. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13(10):1064–1071

    Article  CAS  PubMed  Google Scholar 

  11. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124(Pt 9):1720–1733

    Article  CAS  PubMed  Google Scholar 

  12. Stice E, Burger KS, Yokum S (2013) Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am J Clin Nutr 98(6):1377–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Small DM, Jones-Gotman M, Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19(4):1709–1715

    Article  PubMed  Google Scholar 

  14. Tellez L, Medina S, Han W, Ferreira J, Licona-Limon P, Ren X et al (2013) A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341:800–802

    Article  CAS  PubMed  Google Scholar 

  15. Lutter M, Nestler EJ (2009) Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr 139(3):629–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Burger KS, Berner LA (in press) A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Phys Behav. (available online)

    Google Scholar 

  17. Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86(5):773–795

    Article  CAS  PubMed  Google Scholar 

  18. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG (2010) The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350:43–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mahmoud S, Thorsell A, Sommer W, Heilig M, Holgate J, Bartlett S, Ruiz-Velasco V (2011) Pharmacological consequences of the A118G opioid receptor polymorphims on morphine- and fentanyl-mediated modulation of CA2+ channels in humanized mouse sensory neurons. Anesthesiology 115(5):1054–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM (2008b) Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 117(4):924–935

    Google Scholar 

  21. Bruce AS, Holsen LM, Chambers RJ, Martin LE, Brooks WM, Zarcone JR, Savage CR (2010) Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obesity 34(10):1494–1500

    Article  CAS  Google Scholar 

  22. Dimitropoulos A, Tkach J, Ho A, Kennedy J (2012) Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite 58(1):303–312

    Article  PubMed Central  PubMed  Google Scholar 

  23. Frankort A, Roefs A, Siep N, Roebroeck A, Havermans R, Jansen A (2011) Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imaging taste: an event-related fMRI study. Int J Obes 36(5):1–11

    Google Scholar 

  24. Holsen L, Savage C, Martin L, Bruce A, Lepping R, Ko E, Brooks W, Goldstein JM (2012) Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity. Int J Obes 36(5):638–647

    Article  CAS  Google Scholar 

  25. Martin LE, Holsen LM, Chambers RJ, Bruce AS, Brooks WM, Zarcone JR, Savage CR (2010) Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity 18(2):254–260

    Article  PubMed  Google Scholar 

  26. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, Klapp BF (2007) Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37(2):410–421

    Article  PubMed  Google Scholar 

  27. Stice E, Yokum S, Bohon C, Marti N, Smolen A (2010) Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50(4):1618–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stoeckel LE, Weller RE, Cook EW 3rd Twieg DB, Knowlton RC, Cox JE (2008) Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 41(2):636–647

    Article  PubMed  Google Scholar 

  29. Ng J, Stice E, Yokum S, Bohon C (2011) An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite 57(1):65–72

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD (2012) Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63(1):415–422

    Article  PubMed  Google Scholar 

  31. Nolan-Poupart S, Veldhuizen MG, Geha P, Small DM (2013) Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite 60(1):168–174

    Article  PubMed Central  PubMed  Google Scholar 

  32. Burger KS, Stice E (2013) Elevated energy intake is correlated with hyperresponsivity in attentional, gustatory, and reward brain regions while anticipating palatable food receipt. Am J Clin Nutr 97(6):1188–1194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599

    Article  CAS  PubMed  Google Scholar 

  34. Tindell AJ, Berridge KC, Aldridge JW (2004) Ventral pallidal representation of pavlovian cues and reward: population and rate codes. J Neurosci 24(5):1058–1069

    Article  CAS  PubMed  Google Scholar 

  35. Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307(5715):1642–1645

    Article  CAS  PubMed  Google Scholar 

  36. Balleine BW, Daw ND, O’Doherty JP (2008) Multiple forms of value learning and the function of dopamine. In: Glimcher PW, Fehr E, Camerer C, Poldrack RA (eds) Neuroeconomics: decision making and the brain. Academic, New York, pp 367–385

    Google Scholar 

  37. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    Article  CAS  PubMed  Google Scholar 

  38. Smith K, Tindell A, Aldridge J, Berridge K (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196(2):155–167

    Article  PubMed Central  PubMed  Google Scholar 

  39. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469(7328):53–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chouinard-Decorte F, Felsted J, Small DM (2010) Increased amygdala response and decreased influence of internal state on amygdala response to food in overweight compared to healthy weight individuals. Appetite 54:639

    Article  Google Scholar 

  41. Demos KE, Heatherton TF, Kelley WM (2012) Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci 32(16):5549–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sun X, Veldhuizen M, Wray A, De Araujo I, Small D (2013) Amygdala response to food cues in the absence of hunger predicts weight change. Appetite 60(1):168–174

    Google Scholar 

  43. Yokum S, Ng J, Stice E (2011) Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity (Silver Spring) 19(9):1775–1783

    Article  Google Scholar 

  44. Yokum S, Gearhardt A, Harris J, Brownell K, Stice, E (in press). Individual differences in striatum activity to food commercials predicts weight gain in adolescence. Obesity

    Google Scholar 

  45. Geha PY, Aschenbrenner K, Felsted J, O’Malley SS, Small DM (2013) Altered hypothalamic response to food in smokers. Am J Clin Nutr 97(1):15–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Stice E, Spoor S, Bohon C, Small DM (2008) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322(5900):449–452

    Article  CAS  PubMed  Google Scholar 

  47. Nikolova YS, Ferrell RE, Manuck SB, Hariri AR (2011) Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 36(9):1940–1947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stice E, Yokum S, Burger KS, Epstein L, Smolen A (2012) Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J Neurosci 32(29):10093–10100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P, Sedvall GC (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 4(3):290–296

    Article  CAS  PubMed  Google Scholar 

  50. Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH (1995) Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 65(3):1157–1165

    Article  CAS  PubMed  Google Scholar 

  51. Seeger G, Schloss P, Schmidt MH (2001) Marker gene polymorphisms in hyperkinetic disorder-predictors of clinical response to treatment with methylphenidate? Neurosci Lett 313(1–2):45–48

    Article  CAS  PubMed  Google Scholar 

  52. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, Weinberger DR (2000) Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 22(2):133–139

    Article  CAS  PubMed  Google Scholar 

  53. van Dyck CH Malison RT Jacobsen LK Seibyl JP Staley JK Laruelle M Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46(5):745–751

    PubMed  Google Scholar 

  54. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6(3):243–250

    Article  CAS  PubMed  Google Scholar 

  55. Yokum S, Marti N, Smolen A, Stice E (submitted) Multilocus genetic composite reflecting elevated dopamine signaling predicts future weight gain.

    Google Scholar 

  56. Wang GJ, Volkow ND, Fowler JS (2002) The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 6(5):601–609

    Article  CAS  PubMed  Google Scholar 

  57. de Weijer BA van de Giessen E van Amelsvoort TA Boot E Braak B Janssen IM Booij J (2011) Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res 1(1):37

    Article  PubMed Central  PubMed  Google Scholar 

  58. Kessler RM, Zald DH, Ansari MS, Li R, Cowan RL (in press) Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse

    Google Scholar 

  59. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Pradhan K (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42(4):1537–1543

    Article  PubMed Central  PubMed  Google Scholar 

  60. Eisenstein SA, Antenor-Dorsey JAV, Gredysa DM, Koller JM, Bihum EC, Ranck SA, Hershey T (2013) A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[11C]methyl)benperidol. Synapse 67(11):748–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Haltia LT, Rinne JO, Merisaari H, Maguire RP, Savontaus E, Helin S, Kaasinen V (2007) Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 61(9):748–756

    Article  CAS  PubMed  Google Scholar 

  62. Wilcox C, Braskie M, Kluth J, Jagust W (2010) Overeating behavior and striatal dopamine with 6-[F]-Fluoro-L-m-Tyrosine PET. J Obesity 2010:909348

    Google Scholar 

  63. Babbs RK, Sun X, Felsted J, Chouinard-Decorte F, Veldhuizen MG, Small DM (2013) Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiol Behav 121:103–111

    Article  CAS  PubMed  Google Scholar 

  64. Frank GK, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, O’Reilly RC (2012) Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology 37(9):2031–2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Green E, Jacobson A, Haase L, Murphy C (2011) Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Res 1386:109–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Fetissov SO, Meguid MM, Sato T, Zhang LH (2002) Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am J Physiol Regul Integr Comp Physiol 283(4):R905–R910

    PubMed  Google Scholar 

  67. Geiger BM, Behr GG, Frank LE, Caldera-Siu AD, Beinfeld MC, Kokkotou EG, Pothos EN (2008) Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J 22(8):2740–2746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Huang XF, Zavitsanou K, Huang X, Yu Y, Wang H, Chen F, Deng C (2006) Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behav Brain Res 175(2):415–419

    Article  CAS  PubMed  Google Scholar 

  69. Thanos PK, Michaelides M, Piyis YK, Wang GJ, Volkow ND (2008) Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse 62(1):50–61

    Article  CAS  PubMed  Google Scholar 

  70. Stice E, Yokum S, Burger KS, Epstein LH, Small DM (2011) Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci 31(12):4360–4366

    Google Scholar 

  71. Stice E, Yokum S, Blum K, Bohon C (2010) Weight gain is associated with reduced striatal response to palatable food. J Neurosci 30(39):13105–13109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Bello NT, Lucas LR, Hajnal A (2002) Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 13(12):1575–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ, Benoit SC (2008) Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 122(6):1257–1263

    Article  PubMed Central  PubMed  Google Scholar 

  74. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN (2009) Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159(4):1193–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN (2003) Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci 18(9):2592–2598

    Article  CAS  PubMed  Google Scholar 

  76. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5): 635–641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Val-Laillet D, Layec S, Guerin S, Meurice P, Malbert CH (2011) Changes in brain activity after a diet-induced obesity. Obesity (Silver Spring) 19(4):749–756

    Article  Google Scholar 

  78. Burger KS, Stice E (2012) Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. Am J Clin Nutr 95(4):810–817

    Google Scholar 

  79. Green E, Murphy C (2012) Altered processing of sweet taste in the brain of diet soda drinkers. Physiol Behav 107(4):560–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Rudenga K, Small D (2012) Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite 58(2):504–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Wise RA, Leone P, Rivest R, Leeb, K (1995 Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse 21(2):140–148

    Article  CAS  PubMed  Google Scholar 

  82. Wise RA, Newton P, Leeb K, Burnette B, Justice JB (1995) Fluctuations in nucleus accumbens dopamine concentrations during intravenous cocaine self-administration in rats. Psychopharmacology 120(1):10–20

    Article  CAS  PubMed  Google Scholar 

  83. Ranaldi R, Pocock D, Zereik R, Wise A (1999) Dopamine fluctuations in the nucleus accumbens during maintenance, extinction, and reinstatement of intravenous d-amphetamine self-administration. J Neurosci 19(10):4102–4109

    Google Scholar 

  84. Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324(5927):646–648

    Article  CAS  PubMed  Google Scholar 

  85. Hollmann M, Hellrung L, Pleger B, Schlogl H, Kabisch S, Stumvoll M, Horstmann A (2012) Neural correlates of the volitional regulation of the desire for food. Int J Obes 36(5):648–655

    Google Scholar 

  86. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN (2010) Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci U S A 107(33):14811–14816

    Google Scholar 

  87. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte M, Jansen A (2012) Fighting food temptations: the modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. NeuroImage 60(1):213–220

    Google Scholar 

  88. Yokum S, Stice E (2013) Cognitive regulation of food craing: effects of three cognitive reappraisal strategies on neural response to palatable foods. Int J Obes 37(12):1565–1570

    Google Scholar 

  89. Stoeckel L, Ghosh S, Stern J, Keshavan A, Gabrieli J, Whitfield-Gabrieli, Evins A (2013) Real time fMRI neurofeedback: Effect on food and cigarette cue reactivity. Paper presented at the American College of Neuropsychopharmacology, Florida

    Google Scholar 

  90. Harris JL, Bargh JA, Brownell KD (2009) Priming effects of television food advertising on eating behavior. Health Psychol 28(4):404–413

    Google Scholar 

  91. Halford JC, Gillespie J, Brown V, Pontin EE, Dovey TM (2004) Effect of television advertisements for foods on food consumption in children. Appetite 42(2):221–225

    Google Scholar 

  92. Story M, French S (2004) Food advertising and marketing directed at children and adolescents in the US. Int J Behav Natr Phys Act 1(1):3

    Google Scholar 

  93. Ledikwe JH, Ello-Martin J, Pelkman CL, Birch LL, Mannino ML, Rolls BJ (2007) A reliable, valid questionnaire indicates that preference for dietary fat declines when following a reduced-fat diet. Appetite 49(1):74–83

    Google Scholar 

  94. Mattes RD (1993) Fat preference and adherence to a reduced-fat diet. Am J Clin Nutr 57(3):373–381

    CAS  PubMed  Google Scholar 

  95. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS (2010) Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr 104(1):145–152

    Google Scholar 

  96. Stice E, Yokum S, Burger K, Rohde P, Shaw H, Gau J (in press). A pilot randomized trial of a cognitive reappraisal obesity prevention program. Physiology and Behavior

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Stice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stice, E., Yokum, S., Burger, K. (2014). Neural Vulnerability Factors that Increase Risk for Weight Gain: Prevention and Treatment Implications. In: Nóbrega, C., Rodriguez-López, R. (eds) Molecular Mechanisms Underpinning the Development of Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-12766-8_6

Download citation

Publish with us

Policies and ethics