Skip to main content

Hazards in Karst and Managing Water Resources Quality

  • Chapter
  • First Online:
Karst Aquifers—Characterization and Engineering

Abstract

Karst is an extremely fragile natural environment. The geological, morphological, hydrological, and hydrogeological features of karst determine an overall high vulnerability to a number of potentially dangerous events. The delicate equilibrium of karst ecosystems can be dramatically and irreversibly changed, as a consequence of both natural and anthropogenic impacts. This contribution examines the main peculiarity of karst and discusses the main natural and anthropogenic hazards affecting karst. Sinkholes, mass movements, floods, and loss of karst landscape are dealt with and discussed also by means of description of some case studies. Actions to mitigate the hazard in karst are also treated, highlighting the necessity to protect karst, an environment that needs specific regulations to be properly safeguarded. In particular, the Karst Disturbance Index, to evaluate the degree of disturbance done by man to the natural karst, is discussed. Groundwater contamination is by the World Health Organization listed among the world’s severest problems. Globally, water resources are limited and under pressure from urbanization and climate change. Among available drinking water resources, groundwater from karst aquifers is progressively becoming more valuable for potable, irrigation, and other agricultural and industrial use due to its abundance (high flow rate springs up to some tens of m3/s) and relatively high quality of water. However, its efficient use and protection poses a great challenge to urban karstology due to the very high susceptibility to contamination. The concept of groundwater vulnerability and contamination risk assessment is presented as an alternative approach for source protection zoning and land-use planning in karst. Specifically, vulnerability assessment has in some countries already been adopted by some national water-related policies as it confirmed to be a practical tool for protection zoning. It offers balance between groundwater protection and economic interests. The resulting maps are useful for planners and developers dealing with the protection and management of karst groundwater. However, caution needs to be taken when selecting the appropriate method for vulnerability assessment and when interpreting the results. Karst groundwater protection mostly relies on the implementation of sanitary protection zones where different restrictions apply. A review of the relevant legislation of several European countries showed that the groundwater travel time is the most frequent criterion for the delineation of sanitary protection zones, where the horizontal travel time to the groundwater source is generally considered. As a result, some countries increasingly use groundwater vulnerability maps to define sanitary protection zones and to implement more stringent measures where groundwater is vulnerable. A step further in the optimization of the sanitary protection zone delineation approach is to include the travel time through the vadose zone and to take into account surface water flow to the ponor. The total travel time (ttot) is calculated to obtain the travel time from any point in the catchment area to the tapping structure. For the ponor catchment area, ttot is the sum of the surface water travel time to the ponor (ts) and the travel time from the ponor to the tapping structure, based on dye-tracing tests. For any point outside the catchment area of the ponor, the total travel time is the sum of the vertical (t v) and horizontal (t h) groundwater travel times. Apart from test results obtained using natural and artificial dye tracers, the vertical travel time can be estimated based on vulnerability assessment, while the horizontal time can be assessed by analyzing spring hydrographs. The vulnerability map produced on the basis of total travel time calculations can easily be converted into a map of sanitary protection zones, depending on national legislation. The Remediation of Groundwater in Karst section describes aggressive technologies currently being applied to remediate karst aquifers, including in situ thermal treatment, in situ chemical oxidation, in situ bioremediation, and pump and treat. The fundamentals of each technology are discussed, including design principles, failure mechanisms, and amenable contaminants. The authors first provide an overview of trends in the groundwater remediation industry, which is followed by thought-provoking discussion on the politics of remediation in karst. Special attention is given to the technical challenges presented by karst, such as conduit flow and dissolution features, which may make remediation impracticable. On the technical side, this chapter includes a demonstration of modeling tools to assist with remedial evaluation and design. For example, the authors illustrate the use of VS2DTI for heat transport modeling in thermal remediation design, and the conduit flow process (CFP) for pump and treat design. Each example illustrates the need to incorporate conduit geometry and flow in the remedial analysis, as the use of equivalent porous media (EPM) techniques would lead to poor remedial performance. The hydrogeology of the thick karstified carbonate regions is challenging not only theoretically but also from a practical point of view. In these systems different types of groundwater flow are operating on distinct timescales associated with different types of permeability. Practical and scientific concerns related to karst hydrogeology are often on a regional scale such as sustainable water management, contamination of aquifers, and geothermal utilization. It is key issue to understand the regional and hydraulically connected nature of carbonate systems and to find appropriate solution for these particular problems. The importance of the gravity-driven flow concept is that it helps to understand the common genesis of thermal flow. The paper presents a deduced generalized flow pattern for deep carbonate regions which can provide a basis for finding similarities between thermal springs connected to continental carbonates. The understanding of the scale effect is highlighted to resolve practical problems. An important consequence of the hydraulic continuity and relatively higher hydraulic diffusivity of karst is that the effects of natural or artificial stresses on the groundwater level can propagate greater distances and depths than in siliciclastic sedimentary basins. The Transdanubian Range, Hungary can give an “in situ example” for the operation of hydraulic continuity based on a “long-term pumping test.” The fact of hydraulic continuity operating on a different scale can be used also during the planning of geothermal doublet systems and in the necessity of the use of heat content of effluent lukewarm and thermal springs and wastewater of spas in discharge zones of thermal water. Inadequate management of transboundary aquifers can lead to various groundwater quality (changes in groundwater flow, levels, volumes) and quantity (dissolved substances) problems. These problems are more difficult to prevent, mitigate, and solve in an international context than in the case of national aquifers. International cooperation is necessary to ensure an appropriate assessment, monitoring, and management of transboundary groundwater resources. International agreements are made to prevent potential conflicts and to improve the overall benefit from groundwater. In practice, agreements, to be made and respected, require a sufficient knowledge on the resource, its current state, and the trends. This is often a challenge for invisible groundwater and especially in a complex hydrogeological environment like karst. Aquifers in karst are very vulnerable as well, asking for an additional attention of national and international water authorities. This chapter describes DIKTAS, a case study of transboundary aquifers in the Dinaric karst region; it addresses motivation for international water cooperation, methodological approach, achieved results, and current efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References to Section 17.1

  • Basso A, Bruno E, Parise M, Pepe M (2013) Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environ Earth Sc 70(6):2545–2559

    Google Scholar 

  • Bonacci O, Ljubenkov I, Roje-Bonacci T (2006) Karst flash floods: an example from the Dinaric karst Croatia. Nat Hazards Earth Sys Sci 6:195–203

    Google Scholar 

  • Brinkmann R, Parise M, Dye D (2008) Sinkhole distribution in a rapidly developing urban environment: Hillsborough County, Tampa bay area, Florida. Eng Geol 99:169–184

    Google Scholar 

  • Bruno E, Calcaterra D, Parise M (2008) Development and morphometry of sinkholes in coastal plains of Apulia, southern Italy. Preliminary sinkhole susceptibility assessment. Eng Geol 99:198–209

    Google Scholar 

  • Calò F, Parise M (2006) Evaluating the human disturbance to karst environments in southern Italy. Acta Carsologica 35(2):47–56

    Google Scholar 

  • Calò F, Parise M (2009) Waste management and problems of groundwater pollution in karst environments in the context of a post-conflict scenario: the case of Mostar (Bosnia Herzegovina). Habitat Int 33:63–72

    Google Scholar 

  • Culshaw MG, Waltham AC (1987) Natural and artificial cavities as ground engineering hazards. Quart J Eng Geol 20:139–150

    Google Scholar 

  • Day M, Halfen A, Chenoweth S (2011) The Cockpit country, Jamaica: boundary issues in assessing disturbance and using a karst disturbance index in protected areas planning. In: Van Beynen PE (ed) Karst management. Springer, Dordretch, pp 399–414

    Google Scholar 

  • Delle Rose M, Parise M (2010) Water management in the karst of Apulia, southern Italy. In: Proceedings of international interdisciplinary scientific conference on sustainability of the karst environment. Dinaric karst and other karst regions, vol 2, Plitvice Lakes. IHP-UNESCO, series on groundwater, pp 33–40

    Google Scholar 

  • De Waele J (2009) Evaluating disturbance on Mediterranean karst areas: the example of Sardinia (Italy). Environ Geol 58(2):239–255

    Google Scholar 

  • De Waele J, Gutierrez F, Parise M, Plan L (2011) Geomorphology and natural hazards in karst areas: a review. Geomorph 134(1–2):1–8

    Google Scholar 

  • Farfan H, Dias C, Parise M, Aldana C (2010) Scenarios of groundwater pollution in a karst watershed: a case study in the Pinar del Rio province at Cuba. In: Carrasco F, La Moreaux JW, Duran Valsero JJ, Andreo B (eds) Advances in research in karst media. Springer, Berlin, pp 287–292

    Google Scholar 

  • Fookes PG, Hawkins AB (1988) Limestone weathering: its engineering significance and a proposed classification scheme. Quart J Eng Geol 21:7–31

    Google Scholar 

  • Ford DC, Williams P (2007a) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Goldscheider N, Drew D (eds) (2007) Methods in karst hydrogeology. International contributions to hydrogeology 26. Int Ass Hydrogeol. Taylor & Francis, London

    Google Scholar 

  • Gunn J (1993) The geomorphological impacts of limestone quarrying. Catena 25:187–198

    Google Scholar 

  • Gunn J (2004) Quarrying of limestones. In: Gunn J (ed) Encyclopedia of cave and karst science. Routledge, London, pp 608–611

    Google Scholar 

  • Gunn J (2007) Contributory area definition for groundwater source protection and hazard mitigation in carbonate aquifers. In: Parise M, Gunn J (eds) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geological Society of London, London, pp 97–109 (sp publ 279)

    Google Scholar 

  • Gutierrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Google Scholar 

  • Hajna NZ (2003) Incomplete solution: weathering of cave walls and the production, transport and deposition of carbonate fines. Carsologica, Postojna-Ljubljana

    Google Scholar 

  • International Society for Rock Mechanics (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abs 15:319–368

    Google Scholar 

  • Iovine G, Parise M, Trocino A (2010) Breakdown mechanisms in gypsum caves of southern Italy, and the related effects at the surface. ZeitGeomorph 54(suppl 2):153–178

    Google Scholar 

  • Klimchouk A, Andrejchuk V (2002) Karst breakdown mechanisms from observations in the gypsum caves of the Western Ukraine: implications for subsidence hazard assessment. Int J Speleol 31(1/4):55–88

    Google Scholar 

  • Lollino P, Parise M, Reina A (2004) Numerical analysis of the behavior of a karst cavern at Castellana-Grotte, Italy. In: Proceedings of 1st international UDEC/3DEC symposium, Bochum, 29 Sept–1 Oct 2004, pp 49–55

    Google Scholar 

  • Lollino P, Martimucci V, Parise M (2013) Geological survey and numerical modeling of the potential failure mechanisms of underground caves. Geosys Eng 16(1):100–112

    Google Scholar 

  • Lopez N, Spizzico V, Parise M (2009) Geomorphological, pedological, and hydrological characteristics of karst lakes at Conversano (Apulia, southern Italy) as a basis for environmental protection. Environ Geol 58(2):327–337

    Google Scholar 

  • Margiotta S, Negri S, Parise M, Valloni R (2012) Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Nat Hazards 62(2):657–676

    Google Scholar 

  • Martimucci V, Parise M (2012) Cave surveys, the representation of underground karst landforms, and their possible use and misuse. In: 20th international karst school “karst forms and processes”, Postojna, 18–21 June 2012, Guide Book and Abstracts, pp 69–70

    Google Scholar 

  • Milanovic P (2002) The environmental impacts of human activities and engineering constructions in karst regions. Episodes 25:13–21

    Google Scholar 

  • Nicod J (1972) Pays et paysages du calcaire. Presses Universitaires de France, Paris

    Google Scholar 

  • North LA, van Beynen PE, Parise M (2009) Interregional comparison of karst disturbance: West-Central Florida and Southeast Italy. J Environ Manag 90:1770–1781

    Google Scholar 

  • Palma B, Parise M, Reichenbach P, Guzzetti F (2012) Rock-fall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy. Nat Hazards 61(1):187–201

    Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books

    Google Scholar 

  • Parise M (2003) Flood history in the karst environment of Castellana-Grotte (Apulia, Southern Italy). Nat Hazards Earth Syst Sc 3(6):593–604

    Google Scholar 

  • Parise M (2008) Rock failures in karst. In: Cheng Z, Zhang J, Li Z, Wu F, Ho K (eds) Landslides and engineered slopes. Proceedings of 10th international symposium on landslides, vol 1, Xi’an, pp 275–280

    Google Scholar 

  • Parise M (2010) The impacts of quarrying in the Apulian karst. In: Andreo B, Carrasco F, Duran JJ, La Moreaux JW (eds) Advances in research in karst media. Springer, Berlin, pp 441–447

    Google Scholar 

  • Parise M (2012a) A present risk from past activities: sinkhole occurrence above underground quarries. Carbonates and Evaporites 27(2):109–118

    Google Scholar 

  • Parise M (2012b) Management of water resources in karst environments, and negative effects of land use changes in the Murge area (Apulia). Karst Devel 2(1):16–20

    Google Scholar 

  • Parise M (2013) Recognition of instability features in artificial cavities. In: Proceedings of 16th international congress speleology, Brno, vol 2, 21–28 July 2013, pp 224–229

    Google Scholar 

  • Parise M, Gunn J (eds) (2007) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geological Society of London, London (sp publ 279)

    Google Scholar 

  • Parise M, Lollino P (2011) A preliminary analysis of failure mechanisms in karst and man-made underground caves in southern Italy. Geomorph 134(1–2):132–143

    Google Scholar 

  • Parise M, Pascali V (2003a) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ Geol 44:247–256

    Google Scholar 

  • Parise M, Galeazzi C, Bixio R, Dixon M (2013) Classification of artificial cavities: a first contribution by the UIS Commission. In: Filippi M, Bosak P (eds) Proceedings of 16th international congress speleology, Brno, vol 2, 21–28 July 2013, pp 230–235

    Google Scholar 

  • Santo A, Del Prete S, Di Crescenzo G, Rotella M (2007) Karst processes and slope instability: some investigations in the carbonate Apennine of Campania (southern Italy). In: Parise M, Gunn J (eds) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geological Society of London, London, pp 59–72 (sp publ 279)

    Google Scholar 

  • Sauro U (2003) Dolines and sinkholes: aspects of evolution and problems of classification. Acta Carsologica 32(2):41–52

    Google Scholar 

  • Tharp TM (1995) Mechanics of upward propagation of cover-collapse sinkholes. Eng Geol 52:23–33

    Google Scholar 

  • van Beynen PE, Townsend K (2005) A disturbance index for karst environments. Environ Manag 36:101–116

    Google Scholar 

  • Waltham AC (2002) The engineering classification of karst with respect to the role and influence of caves. Int J Speleol 31(1/4):19–35

    Google Scholar 

  • Waltham T, Lu Z (2007) Natural and anthropogenic rock collapse over open caves. In: Parise M, Gunn J (eds) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geological of Society London, London, pp 13–21 (sp publ 279)

    Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence: karst and cavernous rocks in engineering and construction. Springer, Berlin

    Google Scholar 

  • Weishampel JF, Hightower JN, Chase AF, Chase DZ, Patrick RA (2011) Detection and morphologic analysis of potential below-canopy cave openings in the karst landscape around the maya polity of Caracol using airborne lidar. J Cave Karst Stud 73(3):187–196

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Google Scholar 

  • White E, White W (1969) Processes of cavern breakdown. Bull Natl Speleol Soc 31(4):83–96

    Google Scholar 

  • White EL, White WB (1984) Flood hazards in karst terrains: lessons from the Hurricane Agnes storm. In: Burger A, Dubertret L (eds) Hydrogeology of karst terrains, vol 1, pp 261–264

    Google Scholar 

  • Williams PW (2008a) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karstic) aquifers. Final report COST action 620. European Commission, Brüssel

    Google Scholar 

References to Section 17.2

  • Andreo B, Ravbar N, Vías JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17(3):749–758

    Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160

    Google Scholar 

  • Bonacci O, Pipan T, Culver DC (2009) A framework for karst ecohydrology. Environ Geol 56:891–900

    Google Scholar 

  • Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345

    Google Scholar 

  • De Ketelaere D, Hötzl H, Neukum C, Cività M, Sappa G (2004) Hazard analysis and mapping. In: Zwahlen F (ed) COST action 620. Vulnerability and risk mapping for the protection of carbonate (Karstic) aquifers. Final report COST action 620. European Commission, Directorate-General for Research, Brüssel, Luxemburg, pp 106–107

    Google Scholar 

  • Dörfliger N, Zwahlen F (1998) Practical guide. Groundwater vulnerability mapping in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape, Bern

    Google Scholar 

  • Dörfliger N, Plagnes V (2009) Cartographie de la vulnérabilité des aquifères karstiques guide méthodologique de la méthode PaPRIKa. Rapport BRGM RP-57527-FR

    Google Scholar 

  • Drew D, Hötzl H (eds) (1999) Karst hydrology and human activities. International contributions to hydrogeology. IAH, vol 20. Taylor & Francis/Balkema, London

    Google Scholar 

  • Ford DC, Williams PW (2007b) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Foster S, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21:1389–1392

    Google Scholar 

  • Gogu RC, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques. Application to the Neblon river basin (Belgium). Environ Geol 44(8):881–892

    Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping—application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564

    Google Scholar 

  • Goldscheider N, Madl-Szonyi J, Eross A, Schill E (2010a) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18(6):1303–1318

    Google Scholar 

  • Gunn J, Bailey D (1993) Limestone quarrying and quarry reclamation in Britain. Environ Geol 21(3):167–172

    Google Scholar 

  • Guo F, Jiang GH, Yuan DX, Polk JS (2012) Evolution of major environmental geological problems in karst areas of southwestern China. Environ Earth Sci 69(7):2427–2435

    Google Scholar 

  • Hamilton-Smith E (2007) Karst and world heritage status. Acta Carsologica 36:291–302

    Google Scholar 

  • Han ZS (1998) Groundwater for urban water supplies in northern China—an overview. Hydrogeol J 6:416–420

    Google Scholar 

  • Jeannin PY, Eichenberger U, Sinreich M, Vouillamoz J, Malard A, Weber E (2012) KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwater reserves and resources in Switzerland. Environ Earth Sci 69:999–1013

    Google Scholar 

  • Kaçaroğlu F (1999) Review of groundwater pollution and protection in karst areas. Water Air Soil Pollut 113:337–356

    Google Scholar 

  • Kovačič G, Ravbar N (2005) A review of the potential and actual sources of pollution to groundwater in selected karst areas in Slovenia. Nat Hazards Earth Syst Sci 5(2):225–233

    Google Scholar 

  • Kranjc A, Likar V, Huzjan Ž (eds) (1999) Karst: landscape, life, people. ZRC Publishing, ZRC SAZU, Ljubljana

    Google Scholar 

  • Kresic N (2009a) Groundwater resources: sustainability, management, and restoration. McGraw-Hill, New York

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Jimenez B, Miller K, Oki T, Sen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10

    Google Scholar 

  • Liedl R, Sauter M (1998) Modelling of aquifer genesis and heat transport in karst systems. Bull d`Hydrogéologie 16:185–200

    Google Scholar 

  • Loáiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227:173–194

    Google Scholar 

  • Mamon BA, Azmeh MM, Pitts MW (2002) The environmental hazards of locating wastewater impoundments in karst terrains. Environ Geol 65:169–177

    Google Scholar 

  • Moore CH (2001) Carbonate reservoirs porosity evolution and diagenesis in a sequence stratigraphic framework. Elsevier, Amsterdam

    Google Scholar 

  • Nicod J, Julian M, Anthony E (1997) A historical review of man-karst relationships: miscellaneous uses of karst and their impact. Rivista di Geografia Italiana 103:289–338

    Google Scholar 

  • Parise M, Pascali V (2003b) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ Geol 44:247–256

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2006) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14(4):473–484

    Google Scholar 

  • Pulido-Bosch A, Morell I, Andreu JM (1995) Hydrogeochemical effects of groundwater mining of the Sierra de Crevillente Aquifer (Alicante, Spain). Environ Geol 26(4):232–239

    Google Scholar 

  • Ravbar N, Goldscheider N (2007a) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica 36(3):397–411

    Google Scholar 

  • Ravbar N (2007a) The protection of karst waters. ZRC Publishing, ZRC SAZU, Postojna

    Google Scholar 

  • Ravbar N, Kovačič G (2013) Analysis of human induced changes in a karst landscape—the filling of dolines in the Kras plateau, Slovenia. Sci Total Environ 447:143–151

    Google Scholar 

  • Ravbar N, Kovačič G, Marin AI (2013) Abandoned water resources as potential sources of drinking water—a proposal for management of the Korentan karst spring near Postojna. Acta Geogr Lovan 53(2):295–316

    Google Scholar 

  • Vesper DJ, White WB (2004) Spring and conduit sediments as storage reservoirs for heavy metals in karst aquifers. Environ Geol 45(4):481–493

    Google Scholar 

  • Vrba J, Zaporozec A (eds) (1994) Guidebook on mapping groundwater vulnerability. International contributions to hydrogeology, IAH, vol 16. Verlag Heinz Heise, Hannover

    Google Scholar 

  • Williams PW (2008) World heritage caves and karst: a thematic study. IUCN world heritage studies, no. 2. Gland, Switzerland

    Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karstic) aquifers. Final report COST action 620. European Commission, Directorate-General for Research, Brüssel

    Google Scholar 

References to Section 17.3

  • Biondić B, Biondić R, Dukarić F (1998) Protection of karst aquifers in the Dinarides in Croatia. Environ Geol 34(4):309–319

    Google Scholar 

  • Biondić B (2000) Karst groundwater protection: the case of the Rijeka region, Croatia. Acta Carsologica 29/1, 2:33–46

    Google Scholar 

  • Carey M, Hayes P, Renner A (2009) Groundwater source protection zones. Review of methods, integrated catchment science programme, science report: SC070004/SR1, Environment Agency, Bristol

    Google Scholar 

  • Chave P, Howard G, Schijven J, Appleyard S, Fladerer F, Schimon W (2006) Groundwater protection zones. In: Schmoll O, Howard G, Chilton J, Chorus I (eds) Protecting groundwater for health, managing the quality of drinking-water sources. IWA Publishing, London

    Google Scholar 

  • Conservation Engineering Division (1986) Urban hydrology for small watersheds, National Resources Conservation Service, U.S. Dep. Agric., Tech. Rel. No. 55 (1975)

    Google Scholar 

  • COST Action 65 (1995) Final report on hydrogeological aspects of groundwater protection in karstic areas. European Commission, Luxembourg

    Google Scholar 

  • Department of Environment and Local Government, Environmental Protection Agency and Geological Survey of Ireland (1999) Groundwater protection schemes. Department of Environment and Local Government, Environmental Protection Agency and Geological Survey of Ireland, Dublin

    Google Scholar 

  • Dörfliger N, Zwahlen F (1997) EPIK: a new method for outlining of protection areas in karstic environment. In: Günay G, Johnson I (eds) Karst waters and environmental impacts. Balkema, Rotterdam, pp 117–123

    Google Scholar 

  • European Commission (2007) Common implementation strategy for the water framework directive (2000/60/EC). Guidance document no. 16. Guidance on groundwater in drinking water protected areas. Luxembourg

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Foster S, Hirata R, Gomes D, D’Elia M, Parise M (2002) Groundwater quality protection, a guide for water utilities, municipal authorities, and environment agencies. The International Bank for Reconstruction and Development/The World Bank, Washington

    Google Scholar 

  • Goldscheider N, Drew D (eds) (2007b) Methods in karst hydrogeology. International contribution to hydrogeology, IAH. Taylor & Francis/Balkema, London

    Google Scholar 

  • Göppert N, Goldscheider N (2008) Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46(1):61–68

    Google Scholar 

  • Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Reijiba F, Marchet P (2011) PaPRIKA: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353

    Google Scholar 

  • Kralik M, Keimel T (2003) Time-input, an innovative groundwater-vulnerability assessment scheme: application to an alpine test site. Environ Geol 44:679–686

    Google Scholar 

  • Kresic N (2007) Hydrology and groundwater modelling, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Kresic N (2009b) Groundwater resources: sustainability, management and restoration. McGraw-Hill, New York

    Google Scholar 

  • Kresic N (2013) Water in karst: management, vulnerability, and restoration. McGraw-Hill, New York

    Google Scholar 

  • Margane A (2003) Guideline for the delineation of groundwater protection zones. Technical cooperation project management, protection and sustainable use of groundwater and soil resources in the Arab region, technical reports, vol 5, prepared by BGR & ACSAD, BGR archive no. 122917:5, Damascus, p 329

    Google Scholar 

  • Milanović P (2000) Geological engineering in karst, Dams, reservoirs, grouting, groundwater protection, water tapping, tunneling. Zebra Publishing Ltd., Belgrade

    Google Scholar 

  • Panday S, Langevin CD, Niswonger RG, Ibaraki M, Hughes JD (2013) MODFLOW-USG version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation: U.S. Geological survey techniques and methods, book 6, chap. A45, p 66

    Google Scholar 

  • Prohaska S, Ristić V, Dragišić V (2001) Proračun bilansa i dinamičkih rezervi podzemnih voda karstnog masiva Miroč (Groundwater budget and dynamical reserves estimation of the Miroč karst massif; in Serbian). Vodoprivreda, 33/189–194:35–40

    Google Scholar 

  • Ravbar N (2007) Vulnerability and risk mapping for the protection of karst waters in Slovenia—application to the catchment of the Podstenjšek springs. PhD thesis, University of Nova Gorica Graduate School, Nova Gorica

    Google Scholar 

  • Ravbar N, Goldscheider N (2007b) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica 36(3):397–411

    Google Scholar 

  • Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW–2005. Ground Water 47(3):321–325

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2009) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47(3):361–369

    Google Scholar 

  • Van Waegeningh HG (1985) Overview of the protection of groundwater quality. In: Matthess G, Foster SSD, Skinner ACH (eds) Theoretical background, hydrogeology and practice of groundwater protection zones. International contributions to hydrogeology, IAH, vol 6. Heise, Hanover, pp 156–159

    Google Scholar 

  • Worthington SRH (2003) The Walkerton karst aquifer. Can Caver 60:42–43

    Google Scholar 

  • Worthington SRH (2007) Groundwater residence times in unconfined carbonate aquifers. J Cave Karst Stud 69(1):94–102

    Google Scholar 

  • Worthington SRH (2011) Management of carbonate aquifers. In: van Beynen PE (ed) Karst management. Springer, Berlin

    Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karstic) aquifers. Final report COST action 620. European Commission, Directorate-General for Research, Brüssel

    Google Scholar 

References to Section 17.4

  • Davis E (1997) Ground water issue: how heat can enhance in-situ soil and aquifer remediation: important chemical properties and guidance on choosing the appropriate technique, EPA 540/S-97/502. U.S. Environmental Protection Agency, Office of Research and Development, Ada, Oklahoma, p 18

    Google Scholar 

  • Davis EL (1998) Steam injection for soil and aquifer remediation. EPA/540/S-97/505, U.S. Environmental Protection Agency, Office of Research and Development, Ada, Oklahoma, p 16

    Google Scholar 

  • Falta RW, Rao PS, Basu N (2005a) Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response. J Contam Hydrol 78(4):259–280

    Google Scholar 

  • Falta RW, Basu N, Rao PS (2005b) Assessing the impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution. J Contam Hydrol 79(1):45–66

    Google Scholar 

  • Falta RW, Stacy MB, Ahsanuzzaman ANM, Wang M, Earle RC (2007) REMChlor, remediation evaluation model for chlorinated solvents; User’s manual, version 1.0. U.S. Environmental protection agency, Center for subsurface modeling support, National Risk Management Research Laboratory, Ada, Oklahoma, p 79

    Google Scholar 

  • Gudbjerg J (2003) Remediation by steam injection. PhD thesis, environment and resources DTU, Technical University of Denmark, p 137

    Google Scholar 

  • Huling SG, Pivetz BE (2006) In-situ chemical oxidation. Engineering issue, EPA/600/R-06/072, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH, p 58

    Google Scholar 

  • ITRC (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, 2nd edn. In Situ Chemical Oxidation Team, Interstate Technology and Regulatory Council, Washington, p 71 + appendices

    Google Scholar 

  • Jawitz JW, Fure AD, Demmy GG, Berglund S, Rao PS (2005) Groundwater contaminant flux reduction resulting from non-aqueous phase liquid mass reduction. Wat Resour Res 41(10):10408–10423

    Google Scholar 

  • Kingston JT, Dahlen PR, Johnson PC, Foote E, Williams S (2009) State-of-the-practice overview: critical evaluation of state-of-the-art in situ thermal treatment technologies for DNAPL source zone treatment. ESTCP project ER-0314. Available at http://cluin.org/techfocus/default.focus/sec/Thermal_Treatment%3A_In_Situ/cat/Guidance/

  • Kresic N (2009c) Hydrogeology and groundwater modeling, 2nd edn. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  • Kresic N, Mikszewski A (2013) Hydrogeological conceptual site models: data analysis and visualization. CRC/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Lipson DS, Kueper BH, Gefell MJ (2005) Matrix diffusion-derived plume attenuation in fractured bedrock. Ground Water 43(1):30–39

    Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275

    Google Scholar 

  • McDade JM, McGuire TM, Newell CJ (2005) Analysis of DNAPL source-depletion costs at 36 field sites. Remediat J 15(2):9–18

    Google Scholar 

  • Mikszewski A, Kresic N (2014) Numeric modeling of well capture zones in karst aquifers. In: Kukuric N, Stevanović Z, Kresic N (eds) Proceedings of international conference and field seminar karst without boundaries, 11–15 June 2014, Trebinje, Bosnia and Herzegovina, Dubrovnik, Croatia, DIKTAS, pp 31–38

    Google Scholar 

  • Parsons (Parsons Corporation) (2004) Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents. Air Force Center for Environmental Excellence (AFCEE), Brooks City-Base, Texas; Naval Facilities Engineering Service Center Port Hueneme, California; Environmental Security Technology Certification Program, Arlington, Virginia, various paging

    Google Scholar 

  • Powell T, Smith G, Sturza J, Lynch K, Truex M (2007) New advancements for in-situ treatment using electrical resistance heating. Remediat J 17:51–70

    Google Scholar 

  • Rao PS, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL (2001) Technology integration for contaminated site remediation: cleanup goals and performance criteria. In: Groundwater quality: natural and enhanced restoration of groundwater pollution. Publication no. 275, IAHS, Wallingford, United Kingdom, pp 571–578

    Google Scholar 

  • USACE (U.S. Army Corps of Engineers) (2006) Design: in situ thermal remediation. UFC 3-280-05. Unified Facilities Criteria (UFC). U.S. Army Corps of Engineers, Naval Facilities Engineering Command (NAVFAC), Air Force Civil Engineer Support Agency (AFCESA)

    Google Scholar 

  • USACE (2009) Design: in-situ thermal remediation. Manual 1110-1-401536, p 226. Available at http://www.usace.army.mil/inet/usace-docs/

  • USEPA (1998a) Steam injection for soil and aquifer remediation. EPA/540/S-97/505, Office of solid waste and emergency response, U.S. Environmental Protection Agency, Washington, p 16

    Google Scholar 

  • USEPA (1998b) Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125, Office of solid waste and emergency response, U.S. Environmental Protection Agency, Washington, p 94

    Google Scholar 

  • USEPA (2000) Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications. EPA 542-R-00-008. Available at http://cluin.org/download/remed/engappinsitbio.pdf. Accessed 12 Aug 2011

  • USEPA (2004) In situ thermal treatment of chlorinated solvents; fundamentals and field applications. EPA 542/R-04/010. Office of solid waste and emergency response, U.S. Environmental Protection Agency, Washington, various paging

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2013) Superfund remedy report, 14th edn. Office of solid waste and emergency response, EPA-542-R-13-016, p 22+appendices

    Google Scholar 

References to Section 17.5

  • Alföldi L, Bélteky L. Böcker T, Horváth J, Korim K, Rémi R (eds) (1968) Budapest hévizei (Thermal waters of Budapest: in Hungarian). VITUKI (Institute for water resources research), Budapest, p 365

    Google Scholar 

  • Alföldi L, Kapolyi L (eds) (2007) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben (Mining dewatering in the transdanubian range; in Hungarian). MTA Földrajztudományi Kutatóintézet (Geography Institute of Hungarian academy of sciences) 138

    Google Scholar 

  • Angel RR (1958) Volume requirements for air and gas drilling. Gulf Publishing Co., Houston

    Google Scholar 

  • Ballabás G (2004) Visszatérő karsztforrásokkal kapcsolatos településfejlesztési és környezetvédelmi lehetőségek és veszélyek Tata város példáján (Land use and environmental possibilities and dangers regarding the re-operating of karst springs in the example of Tata; in Hungarian). VIII national conference for Geographer PhD students Szeged. CD 11 http://geogr.elte.hu/TGF/TGF_Cikkek/ballabas2.pdf

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1:325–328

    Google Scholar 

  • Csepregi A (2007) A karsztvíztermelés hatása a Dunántúli-középhegység vízháztartására (The effect of water withdrawal on the water balance of the Transdanubian Range; In Hungarian). 77–112. In: Alföldi L, Kapolyi L (eds) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben (Mining dewatering in the transdanubian range; in Hungarian) MTA Földrajztudományi Kutatóintézet (Geography Institute of Hungarian Academy of Sciences), p 138

    Google Scholar 

  • Erőss A, Zsemle F, Pataki L, Csordás J, Zsuppán K, Pulay E (2013) Heat potential evaluation of effluent and used thermal waters in Budapest, Hungary. In: Szőcs T, Fórizs I (eds) ’013) Proceedings of the IAH Central European groundwater conference, Mórahalom, Hungary 08–10.05.2013. Szeged University Press, Szeged, pp 98–99

    Google Scholar 

  • Ford DC, Williams PW (2007c) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Goldscheider N, Mádl-Szőnyi J, Erőss A, Schill E (2010b) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18(6):1303–1318

    Google Scholar 

  • Haas J (ed) (2001) Geology of Hungary. Eötvös University Press Budapest, p 317

    Google Scholar 

  • Horusitzky H (1923) Tata és Tóváros hévforrásainak hidrogeológiája és közgazdasági jövője (Hydrogeology of Tata, the town of lakes and its economic future; in Hungarian). A Magyar Királyi Földtani Intézet Évkönyve (Yearbook of the Hungarian Royal Geological Institute) XXV. köt. 3. Budapest, pp 37–83

    Google Scholar 

  • Hubbert MK (1940) The theory of ground-water motion. J Geol XLVIII 8(1):785–944

    Google Scholar 

  • Johnson PW (1995) Design techniques in air and gas drilling: cleaning criteria and minimum flowing pressure gradients. J Can Pet Tech (May)

    Google Scholar 

  • Király L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractéres physiques des roches karstiques. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. IAH, International Union of Geological Sciences, Series B, 3, pp 53–67

    Google Scholar 

  • Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special paper no.1, National Cave and Karst Research Institute, Carlsbad, 106

    Google Scholar 

  • Kovács A, Szőcs T (2014) Prediction of karst water recovery following regional mine depressurization in the tata area, Hungary. In: Kukurić N, Stevanović Z, Krešic N (eds) Proceedings of the DIKTAS conference: “Karst without boundaries”, Trebinje, 11–15 June 2014, pp 165–170

    Google Scholar 

  • Lenkey L, Dövényi P, Horváth F, Cloething SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EUG Stephan Mueller special publication series, 3:29–40

    Google Scholar 

  • Lorberer Á (1986) A Dunántúli-középhegység karsztvízföldtani és vízgazdálkodási helyzetfelmérése és döntés előkészítő értékelése (evaluation and outline of the karst hydrogeology and water management of the Transdanubian range; in Hungarian) VITUKI Témajelentés Kézirat (manuscript for the Institute for water resources research)

    Google Scholar 

  • Lovrity V, Bodor P (2014) A Boltív-forrás vízhozamának és fizikai, kémiai paramétereinek változása a csapadékesemények és a Duna vízállás függvényében. Értékelés archív adatok és recens mérések alapján (the changing of discharge volume, physical and chemical parameters of Boltív Spring in comparison with the precipitation and the level of the Danube. Evaluation based on archive data and recent measurements; in Hungarian). Young student research thesis. ELTE Physical and Applied Geology Department 80

    Google Scholar 

  • Maller M and Hajnal G (2013) A tatai források hidrogeológiai vizsgálata Hydrogeological investigations related to the springs of Tata (in Hungarian) 7–18. In: Török Á, Görög P, Vásárhelyi B (eds) (2013) Mérnökgeológia-Kőzetmechanika (Engineering geology and rock mechanics) http://mernokgeologia.bme.hu/ocs/index.php/konferencia/2013/paper/viewFile/7/7

  • Mádl-Szőnyi J, Leél-Őssy Sz, Kádár M, Angelus B, Zsemle F, Erőss A, Kalinovits S, Segesdi J, Müller I (2001) In: Mindszenty A (ed) A Budai Termálkarszt-rendszer hidrodinamikájának vizsgálata nyomjelzéssel (evaluation of hydrodynamics of Buda thermal Karst by tracing experiments; in Hungarian). Manuscript ELTE, Physical and Applied Geology Department 456

    Google Scholar 

  • Mádl-Szőnyi J, Zsemle F, Lenkey L, Virág M (2009) Termálvízalapú geotermikus fűtési rendszerek potenciáltérképe Budapesten. Kétkutas rendszerek telepítési terve (potential map of implementation of geothermal doublets in Budapest; in Hungarian), vol 1–2, Manuscript ELTE Erdélyi Mihály Foundation

    Google Scholar 

  • Mádl-Szőnyi J and Erőss A (2013) Effects of regional groundwater flow on deep carbonate systems focusing on discharge zones. In: Proceedings of the international symposium on regional groundwater flow: theory, applications and future development, 21–23 June Xi’an, China. China Geological Survey, Commission of Regional Groundwater Flow, IAH, pp 71–75

    Google Scholar 

  • Mindszenty A (ed) (2013) Budapest: földtani értékek és az ember. Városgeológiai tanulmányok („In urbe et pro urbe”) (Budapest, geological values and the man. Urban geological studies; in Hungarian) ELTE Eötvös Kiadó, Budapest, p 311

    Google Scholar 

  • Papp F (1942) Budapest meleg gyógyforrásai (thermal medicinal springs of Budapest; in Hungarian). A Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet kiadványa, Budapest, p 252

    Google Scholar 

  • Pratt CA (1989) Modifications to and experience with air-percussion drilling, SPE Drilling Engineering, December

    Google Scholar 

  • Royden LH, Horváth F (eds) (1988) The Pannonian basin—a study in basin evolution. Amer Assoc Petrol Geol Memoir 45, Tulsa, 394

    Google Scholar 

  • Sass I (2007) Geothermie und Grundwasser (geothermics and groundwater). Grundwasser 12(2):93

    Google Scholar 

  • Szabó T (2006) Alulegyensúlyozott fúrási technológia folyadékainak vizsgálata (Examination of technological liquids of below balanced drilling technology). PhD thesis, University of Miskolc 106

    Google Scholar 

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Google Scholar 

  • Tóth J (1971) Groundwater discharge: a common generator of diverse geologic and morphologic phenomena. IASH Bull 16(1–3):7–24

    Google Scholar 

  • Tóth J (1984) The role of regional gravity flow in the chemical and thermal evolution of ground water. In: Hitchon, B, Wallick, EI (eds) Proceedings of Ist Canadian/American conference on hydrogeology, practical applications of ground water geochemistry. National Water Well Association and Alberta Research Council, Worthington

    Google Scholar 

  • Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16

    Google Scholar 

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Google Scholar 

  • Tóth J (2009) Gravitational systems of groundwater flow theory, evaluation, utilization. Cambridge University Press, Hardback 294

    Google Scholar 

  • Tóth J (2013) Groundwater flow systems: analysis, characterization and agency in karst genesis. A1. REGFLOW and MANKARST training course. International symposium on hierarchical flow systems on karst regions. 2–3 Sept 2013 Budapest, Hungary, Eötvös Loránd University. Supplementary notes on session 2 1–14 http://www.karstflow2013.org/?nic=training-course

  • Tóth M, Dorn F, Fürst Á, Lorberer Á, Sárváry I (1999) A tatai források visszatérésével kapcsolatos vizsgálatok és cselekvési program, Tata (tasks and activities regarding the re-operation of springs at tata; in Hungarian). Manuscript hydrosys Ltd, Monumentum Ltd, Equilibrium Ltd, Municipality of Tata

    Google Scholar 

References to Section 17.6

  • IGRAC (2014) Transboundary aquifers of the World map, update 2014. www.un-igrac.org

  • INBO and GWP (2012) Handbook for integrated water resources management in basins, Paris, Sweden

    Google Scholar 

  • DIKTAS Project Team (2013) Transboundary diagnostic analysis, prepared in the framework of the ‘protection and sustainable use of the Dinaric karst transboundary aquifer system’ (DIKTAS) project http://diktas.iwlearn.org

  • Duscher K (2011) Groundwater GIS reference layer, submission/compilation status and evaluation, EEA/NSV/10/002—ETC/ICM, European Environmental Agency

    Google Scholar 

  • Machard de Gramont H et al (2010) Toward a joint management of transboundary aquifer systems, AFC, French Development Agency

    Google Scholar 

  • European Commission (2003) Working Group on Water Bodies, Common implementation strategy for the water framework directive (2000/60/EC), Identification of water bodies, guiding document no 2

    Google Scholar 

  • Kukuric N, Gun van der J, Vasak S (2008) Towards a methodology for the assessment of internationally shared ground-waters. In: Proceedings of 4th international symposium on transboundary waters management, Thessaloniki

    Google Scholar 

  • Lipponen A, Kukuric N (2010) Assessment of transboundary aquifers in the context of the second assessment of transboundary waters in the United Nations Economic Commission for Europe. International conference transboundary aquifers: challenges and new directions

    Google Scholar 

  • Stephan RM (2011) The draft articles on the law of transboundary aquifers: the process at the UN ILC, 13 Int’l Comm L Rev 223

    Google Scholar 

  • UNECE Task Force on Monitoring and Assessment (1999) Inventory of transboundary groundwaters UNECE, Geneva, Switzerland

    Google Scholar 

  • UNECE (2007) The first assessment of transboundary rivers. Lakes and groundwaters UNECE, Geneva, Switzerland

    Google Scholar 

  • UNECE (2011) The second assessment of transboundary rivers. Lakes and groundwaters UNECE, Geneva

    Google Scholar 

  • UNESCO (2001) ISARM framework document www.isarm.org

  • UNESCO-IHP (2011) Methodology for the GEF transboundary waters assessment programme. vol 2, methodology for the assessment of transboundary aquifers, UNEP, vi + 113 pp

    Google Scholar 

  • UNESCO (2012) GEF Groundwater portfolio analysis (working draft)

    Google Scholar 

  • UN-ESCWA and BGR (2013) Inventory of shared water resources in Western Asia. Beirut, Lebanon http://waterinventory.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Parise or Mario Parise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parise, M. et al. (2015). Hazards in Karst and Managing Water Resources Quality. In: Stevanović, Z. (eds) Karst Aquifers—Characterization and Engineering. Professional Practice in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-12850-4_17

Download citation

Publish with us

Policies and ethics