Skip to main content

Review and Improvement of Several Optimal Intelligent Pitch Controllers and Estimator of WECS via Artificial Intelligent Approaches

  • Chapter
  • First Online:
Complex System Modelling and Control Through Intelligent Soft Computations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

Wind turbines in megawatt classification ordinarily rotate at variable speed in wind farm. Therefore turbine operation must be managed in order to maximize the conversion efficiency below rated power and reduce loading on the drive-train. In addition, to control the energy captured throughout operation above and below rated wind speed, researchers particularly employ pitch control of the blades. Thus, we could manage the energy captured throughout operation above and below rated wind speed using pitch control of the blades. This chapter suggests six new plans to conquer wind fluctuation problems based on a new Nero Fuzzy and Nero Fuzzy Genetic Controller where the fuzzy knowledge based are tuned automatically by Genetic Algorithm (GA) as known Tuned Fuzzy Genetic System (TFGS). Additionally In this Chapter, a new hybrid control has been trained that Wind Energy Conversion System (WECS) has optimal performance. This method contains a Multi-Layer Perceptron (MLP) Neural Network (NN) (MLPNN) and a Fuzzy Rule extraction from a Trained Artificial Neural Network using Genetic Algorithm (FRENGA). Proposed Hybrid method recognizes disturbance wind with sensors and it generates desired pitch angle control by comparison between FRENGA and MLPNN results. One of them has better signal control is selected to send to pitch blade controller. Consequently Proposed strategies reject wind disturbance in Wind Energy Conversion Systems (WECSs) input with pitch angel control generation. Consequently, proposed approaches have regulated output aerodynamic power and torque in the nominal range. Results indicate that the new proposed Artificial Intelligent (AI) methods extraction system outperform the best and earliest methods in controlling the output during wind fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkarim, M., Achraf, A., & Lotfi, K. (2011). Electric power generation based on variable speed wind turbine under load disturbance. Energy, 36, 5016–5026.

    Article  Google Scholar 

  • Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases (pp. 207–216). Washington D.C: SIGMOD.

    Google Scholar 

  • Andrew, K., & Haiyang, Z. (2010). Optimization of wind turbine energy and power factor with an evolutionary computation algorithm. Energy, 35, 1324–1332.

    Article  Google Scholar 

  • Azar, A. T. (2010b). Adaptive neuro-fuzzy system. In A. T Azar (Ed.) Fuzzy systems. Vienna: IN-TECH. ISBN 978-953-7619-92-3.

    Google Scholar 

  • Azar, A. T. (2012). Overview of Type-2 fuzzy logic Systems. International Journal of Fuzzy System Applications (IJFSA), 2(4), 1–28.

    Article  MathSciNet  Google Scholar 

  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, 49(3), 313–329.

    Article  Google Scholar 

  • Bianchi, F. D., Battista, H. D., & Mantz, R. J. (2006). Wind turbine control systems: Principles, modeling and gain scheduling. New York: Springer.

    Google Scholar 

  • Bianchi, F. D., Battista, H. D., & Mantz, R. J. (2008). Optimal gain-scheduled control of fixed-speed active stall wind turbines. IET Renewable Power Generation, 14–29. doi:10.1049/ iet-rpg: 20070106.

    Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. U.K: Oxford University Press.

    Google Scholar 

  • Bossanyi, E. A. (2000). The design of closed loop controllers for wind turbines. Wind Energy, 3, 149–163.

    Article  Google Scholar 

  • Boukhezzar, B., Lupu, L., Siguerdidjane, H., & Hand, M. (2007). Multivariable control strategy for variable speed, variable pitch wind turbines. Renewable Energy, 32, 1273–1287.

    Article  Google Scholar 

  • Brice, B., Tarek, A. A., & Mohamed, E. H. B. (2009). High-order sliding-mode control of variable-speed wind turbines. IEEE Transactions on Industrial Electronics, 56(9), 361–376.

    Google Scholar 

  • Camblong, H. (2004). Minimisation de l’impact des perturbations d’origine éoliennes dans la génération d’électricité par des aérogénérateurs à vitesse variable.

    Google Scholar 

  • Carlin, P. W., Laxson, A. S., & Muljadi, E. B. (2001). The history and state of the art variable-speed wind turbine technology. NREL. Technical Report.

    Google Scholar 

  • Chen, S. M., & Yeh, M. S. (1997). Generating fuzzy rules from relational database systems for estimating null values. Cybernetics and Systems: An International Journal, 28(8), 695–723.

    Article  MATH  Google Scholar 

  • Cotrell, J. (2004). Motion technologies CRADA CRD-03-130: Assessing the potential of amechnical continuously variable transmission. NREL, Technical Report.

    Google Scholar 

  • Craven, M. W., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks. In Advances in Neural Information Processing Systems 8, 24–30.

    Google Scholar 

  • Darbari, A. (2000). Rule extraction from trained ANN: A survey. Technical report Institute of Artificial intelligence, Department of Computer Science, TU Dresden.

    Google Scholar 

  • Endusa, B. M., & Aki, U. (2009). LQG design for megawatt-class WECS with DFIG based on functional models’ fidelity prerequisites. IEEE Transactions on Energy Conversion, 24(4), 321–340.

    Google Scholar 

  • Gallant, S. I. (1998). Connectionist expert systems. Communications of the ACM, 31(2), 152–169.

    Article  Google Scholar 

  • Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design (pp. 32–55). New York: Wiley.

    Google Scholar 

  • Giles, C. L., Miller, C. B., Chen, D., Chen, H., Sun, G. Z., & Lee, Y. C. (1992). Learning and extracting finite state automata with second-order recurrent neural networks. Neural Computation, 4(3), 393–405.

    Article  Google Scholar 

  • Giles, C. L., & Omlin, C. W. (1993). Extraction, insertion, and refinement of symbolic rules in dynamically driven recurrent networks. Connection Science, 5(3–4), 307–328.

    Article  Google Scholar 

  • Gjengedal, T. (2004). Large scale wind power farms as power plants. In Proceedings Nordic Wind Power Conference (pp. 48–55).

    Google Scholar 

  • Glorennec, P. Y. (1997). Coordination between autonomous robots. International Journal of Approximate Reasoning, 17(4), 433–446.

    Article  MATH  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison Wesley.

    MATH  Google Scholar 

  • Golea, M. (1996). On the complexity of rule extraction from neural networks and network querying. In Proceedings of the AISB’96 Workshop on Rule Extraction from Trained Neural Networks (pp. 51–59), Brighton, UK.

    Google Scholar 

  • Hand, M. M. (1999). Variable-speed wind turbine controller systematic design methodology: A comparaison of nonlinear and linear model-based designs. NREL report TP-500-25540, National Renewable Energy Laboratory, Golden, CO, July.

    Google Scholar 

  • Heider, H., & Drabe, T. (1997). A cascaded genetic algorithm for improving fuzzy-system design. International Journal of Approximate Reasoning, 17(4), 351–368.

    Article  MATH  Google Scholar 

  • Hisao, I., Tomoharu, N., & Tadahiko, M. (1999). Techniques and applications of genetic algorithm-based methods for designing compact fuzzy classification systems. (Chap. 40) Fuzzy Theory Systems: Techniques and Applications, 3, 35–45.

    Google Scholar 

  • Hong, Y. Y., Chang, H. L., & Chiu, C. S. (2010). Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy, 3, 3870–3876.

    Article  Google Scholar 

  • Hong, T. P., Kuo, C. S., & Chi, S. C. (2001). Trade-off between time complexity and number of rules for fuzzy mining from quantitative data. International Journal Uncertain Fuzziness Knowledge-Based Systems, 9(5), 587–604.

    Article  MATH  Google Scholar 

  • Horiuchi, N., & Kawahito, T. (2001). Torque and power limitations of variable speed wind turbines using pitch control and generator power control. IEEE Power Engineering Society Summer Meeting, 2(1), 638–643.

    Article  Google Scholar 

  • Jianjun, L., Shozo, T., & Yoshikazu, I. (2006). Explanatory rule extraction based on the trained neural network and the genetic programming. Journal of the Operations Research Society of Japan, 49(1), 66–82.

    MATH  MathSciNet  Google Scholar 

  • Kaneko, T., Uehara, A., Senjyu, T., Yona, A., & Urasaki, N. (2010). An integrated control method for a wind farm to reduce frequency deviations in a small power system. Applied Energy, 88, 1049–1058.

    Article  Google Scholar 

  • Kanellos, F. D., Papathanassiou, S. A., & Hatziargyriou, N. D. (2000). Dynamic analysis of a variable speed wind turbine equipped with a voltage source ac/dc/ac converter interface and a reactive current control loop. In 10th Mediterranean Electrotechnical Conference, IEEE, 3, pp. 986–989.

    Google Scholar 

  • Kasabov, N. K. (1998). Foundation of neural networks, fuzzy systems and knowledge engineering (2nd ed.), Cambridge: A Bradford Book/the MIT Press.

    Google Scholar 

  • Kasiri, H., Momeni, H. R., Azimi, M., & Motavalian, A. R. (2011b). A New hybrid optimal control for WECS using MLP neural network and genetic neuro fuzzy. In 2nd IEEE International Conference on Control, Instrumentation and Automation (ICCIA) (pp. 361–366), 978-1-4673-1690-3 IEEE.

    Google Scholar 

  • Kasiri, H., Momeni, H. R., & Kasiri, A. (2012a). Optimal intelligent control for wind turbulence rejection in WECS using ANNs and genetic fuzzy approach. International Journal of Soft Computing and Soft Engineering, Jscse, 2(9), 16–34. doi:10.7321/jscse.v2.n9.2.

    Article  Google Scholar 

  • Kasiri, H., Sanee Abadeh, M., & Momeni, H. R. (2012b). Optimal estimation and control of WECS via a genetic neuro fuzzy approach. Energy, 40, 438–444.

    Article  Google Scholar 

  • Kasiri, H., Sanee Abadeh, M., Momeni, H. R., & Motavalian, A. R. (2011a). Fuzzy rule extraction from a trained artificial neural network using genetic algorithm for WECS control and parameter estimation. In Proceedings of the 8th IEEE international Conference on Fuzzy Systems and Knowledge Discovery (FSKD11) (pp. 635–639), Shanghai, China. doi:978-1-61284-181-6/11.

    Google Scholar 

  • Kathryn, E. J., Lucy, Y. P., Mark, J. B., & Lee, J. F. (2006). Standard and adaptive techniques for maximizing energy capture. IEEE Control Systems Magazine (June), 3(2), 232–240.

    Google Scholar 

  • Kaya, M., & Alhajj, R. (2003). A clustering algorithm with genetically optimized membership functions for fuzzy association rules mining. In IEEE International Conference on Fuzzy Systems (pp. 881–886), St. Louis, Missouri.

    Google Scholar 

  • Kuo, R. J. (1995). Intelligent diagnosis for turbine blade faults using artificial neural networks and fuzzy logic. Engineering Applications of Artificial Intelligence, 8(1), 25–34. doi:10.1016/0952-1976(94)00082-X.

    Article  Google Scholar 

  • Laks, J. H., Pao, L. Y., & Wright, A. D. (2009). Control of wind turbines: Past, present, and future. In American Control Conference Hyatt Regency Riverfront (pp. 10–12).

    Google Scholar 

  • Lin, W. M., & Hong, C. M. (2010). Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system. Energy, 35, 2440–2447.

    Article  Google Scholar 

  • Lin, W. M., Hong, C. M., & Fu, S. C. (2010a). Fuzzy neural network output maximization control for sensorless wind energy conversion system. Energy, 35, 592–601.

    Article  Google Scholar 

  • Lin, W. M., Hong, C. M., & Fu, S. C. (2010b). On-line designed hybrid controller with adaptive observer for variable-speed wind generation system. Energy, 35, 3022–3030.

    Article  Google Scholar 

  • Litipu, Z., & Nagasaka, K. (2004). Improve the reliability and environment of power system based on optimal allocation of WPG. IEEE Power System Conference Exposition Proceedings (Vol. 1, pp. 524–532).

    Google Scholar 

  • Luo, F. L., & Unbehaben, R. (1998). Applied neural networks for signal processing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ma, X. (1997). Adaptive extremum control and wind turbine control PhD thesis, Danemark.

    Google Scholar 

  • Magdalena, L. (2001). Genetic fuzzy systems—Evolutionary tuning and learning of fuzzy knowledge bases. Singapore: World Scientific.

    MATH  Google Scholar 

  • Mangialardi, L., & Mantriota, G. (1996). Dynamic behaviour of wind power systems equipped with automatically regulated continously variable transmission. Renewable Energy, 7(2), 185–203.

    Article  Google Scholar 

  • Martin, F., Purellku, I., & Gehlhaar, T. (2014). Modelling of and simulation with grid code validated wind turbine models. Germanischer Lloyd Industrial Services GmbH, Competence Centre Renewables Certification, Steinhöft 9, 20459 Hamburg, Germany.

    Google Scholar 

  • Mitra, S. (1994). Fuzzy MLP based expert system for medical diagnosis. Fuzzy Sets and Systems, 65(2–3), 285–296.

    Article  Google Scholar 

  • Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transaction on Neural Networks, 11(3), 748–768.

    Article  Google Scholar 

  • Mitra, S., Pal, S. K., & Mitra, P. (2002). Data mining in soft computing framework: A survey. IEEE Transactions on Neural Networks, 13(1), 3–14.

    Article  Google Scholar 

  • Moyano, C. F., & Lopes, J. A. (2009). An optimization approach for wind turbine commitment and dispatch in a wind park. Electric Power Systems Research, 79, 71–79.

    Article  Google Scholar 

  • Muhando, E. B. (2008). Modeling-based design of intelligent control paradigms for modern wind generating systems. (Doctoral dissertation, University of the Ryukyus, Nishihara, Japan).

    Google Scholar 

  • Nauck, N. (2000). Data analysis with neuro-fuzzy methods. (Habilitation Thesis University of Magdeburg).

    Google Scholar 

  • Oh, S. H. (2010). Error back-propagation algorithm for classification of imbalanced data. Neurocomputing, 5(3), 23–35. doi:10.1016/j.neucom.2010.11.024.

    Google Scholar 

  • Omlin, C. W., Giles, C. L., & Miller, C. B. (1992). Heuristics for the extraction of rules from discrete time recurrent neural networks. In Proceedings of the International Joint Conference on Neural Networks (Vol. 1, pp. 33–38), Baltimore, MD.

    Google Scholar 

  • Pao, Y. H. (1989). Adaptive pattern recognition and neural networks. Reading, MA: Addison-Wesley Publishing Co., Inc.

    Google Scholar 

  • Prakash, A., Chan Felix, T. S., & Deshmukh, S. G. (2011). FMS scheduling with knowledge based genetic algorithm approach. Expert Systems with Applications, 38, 3161–3171.

    Article  Google Scholar 

  • Roy, A. (2000). On connectionism, rule extraction, and brain-like learning. IEEE Transactions on Fuzzy Systems, 8(2), 222–227.

    Article  Google Scholar 

  • Saito, K., & Nakano, R. (2002). Extracting regression rules from neural networks. Neural Networks, 15(10), 1279–1288.

    Article  Google Scholar 

  • Sakamoto, R., Senjyu, T., Kinjo T., Urasaki, N., Funabashi, T., & Fujita, H. (2005). Output power leveling of wind turbine generator for all operation regions by pitch angle control. In IEEE Power Engineering Society General Meeting (pp. 2274–2281).

    Google Scholar 

  • Salman, K. S., & Teo, A. L. J. (2003). Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator. IEEE Transactions on Power Systems, 18, 793–802.

    Article  Google Scholar 

  • Santos, R., Nievola, J., & Freitas, A. (2000). Extracting comprehensible rules from neural networks via genetic algorithm. In Proceedings of the IEEE Symposium on Combination of Evolutionary Algorithm and Neural Network (pp. 130–139), S. Antonio, RX, USA.

    Google Scholar 

  • Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., & Sekine, H. (2006). Output power leveling of wind farm using pitch angle control with fuzzy neural network. 1-4244-0493-2 © IEEE.

    Google Scholar 

  • Setiono, R., Leow, W. K., & Zurada, J. M. (2002). Extraction of rules from artificial neural networks for nonlinear regression. IEEE Transactions on Neural Networks, 13(3), 564–577.

    Article  Google Scholar 

  • van der Hooft, E. L, & van Engelen, T. G. (2003). Feed forward control of estimated wind speed. Technical report ECN-C-03-137, ECN Windenergie.

    Google Scholar 

  • van der Hooft, E. L, & van Engelen, T. G. (2004). Estimated wind speed feed forward control for wind turbine operation optimisation. In European Wind Energy Conference Proceedings (pp. 35–42), London.

    Google Scholar 

  • Verdonschot, M. J. (2009). Modeling and control of wind turbines using a continuously variable transmission. Master’s thesis, Eindhoven University of Technology Department Mechanical Engineering Dynamics and Control Technology Group, April.

    Google Scholar 

  • W2000 2 MW Wind Turbine, Wikov Wind in partnership with WINDTEC ORBITAL2, September 2007, Technical brochure.

    Google Scholar 

  • Wang, W., & Bridges, S.M. (2000). Genetic algorithm optimization of membership functions for mining fuzzy association rules. In International Joint Conference on Information Systems, Fuzzy Theory and Technology Conference (pp. 1–4), Atlantic City.

    Google Scholar 

  • Wang, X. Z., Zhang, T., & He, L. (2010). Application of fuzzy adaptive back-propagation neural network in thermal conductivity gas analyzer. Neurocomputing, 73, 679–683.

    Article  Google Scholar 

  • Wermter, S., & Sun, R. (2000). Hybrid neural systems. Berlin: Springer.

    Book  Google Scholar 

  • Witten, I. H., & Frank, E. (1999). Data mining. practical machine learning tools and techniques with java implementations. San Diego: Academic Press.

    Google Scholar 

  • Xing, Z., Li, Q., Su, X., & Guo, H. (2009). Application of BP neural network for wind turbines. In Second International Conference on Intelligent Computation Technology and Automation (pp. 10–18). doi:10.2119.

    Google Scholar 

  • Yingduo, H., Zonghong, W., Qi, C., & Shaohua, T. (1997). Artificial-neural-network-based fast valving control in a power-generation system. Engineering Applications of Artificial Intelligence, 10(2), 139–155. doi:10.1016/S0952-1976(96)00071-1.

    Article  Google Scholar 

  • Yue, S., Tsang, E., Yeung, D., & Shi D. (2000). Mining fuzzy association rules with weighted items. In IEEE International Conference on Systems, Man and Cybernetics (pp. 1906–1911), Nashville, Tennessee.

    Google Scholar 

  • Zhou, Z. H., Chen, S. F., & Chen, Z. Q. (2000). A statistics based approach for extracting priority rules from trained neural networks. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (Vol. 3, pp. 401–406), Como, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Kasiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kasiri, H., Momeni, H.R., Abadeh, M.S. (2015). Review and Improvement of Several Optimal Intelligent Pitch Controllers and Estimator of WECS via Artificial Intelligent Approaches. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics