Skip to main content

High-Resolution Synaptic Connectomics

  • Chapter
  • First Online:
New Techniques in Systems Neuroscience

Abstract

High-speed, high-resolution connectomics enables unambiguous mapping of synapses, gap junctions, adherens junctions, and other forms of adjacency among neurons in complex neural systems such as brain and retina. This chapter reviews the motivations for generating complete network architectures; the technologies available for large-scale network acquisition, visualization, and analysis; the fusion of molecular markers with a high-resolution ultrastructure; new networks and organelles discovered by ultrastructural connectomics; and new technological advances needed to expand the applications of connectomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, R. A. (1969). The retinal bipolar cells and their synapses in the inner plexiform layer. UCLA Forum Medical Sciences, 8, 101–143.

    Google Scholar 

  2. Anderson, J. R., Jones, B. W., Yang, J.-H., Shaw, M. V., Watt, C. B., Koshevoy, P., Spaltenstein, J., Jurrus, E., UV, K., Whitaker, R., Mastronarde, D., Tasdizen, T., & Marc, R. E. (2009). A computational framework for ultrastructural mapping of neural circuitry. PLoS Biology, 7(3), e1000074.

    Article  Google Scholar 

  3. Anderson, J. R., Grimm, B., Mohammed, S., Jones, B. W., Spaltenstein, J., Koshevoy, P., Tasdizen, T., Whitaker, R., & Marc, R. E. (2011a). The Viking viewer: Scalable multiuser annotation and summarization of large connectomics datasets. Journal of Microscopy, 241, 13–28. doi:10.1111/j.1365-2818.2010.03402.x

    Article  MathSciNet  Google Scholar 

  4. Anderson, J. R., Jones, B., Watt, C., Shaw, M. V., Yang, J.-H., DeMill, D., Lauritzen, J. S., Lin, Y., Rapp, K. D., Mastronarde, D., Koshevoy, P., Grimm, B., Tasdizen, T., Whitaker, R., & Marc, R. E. (2011b). Exploring the retinal connectome. Molecular Vision, 17, 355–379.

    Google Scholar 

  5. Aster, R., Borchers, B., & Thurber, C. (2005). Parameter estimation and inverse problems. New York: Academic Press

    MATH  Google Scholar 

  6. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  MathSciNet  ADS  Google Scholar 

  7. Barmpoutis, D., & Murray, R. M. (2010). Networks with the smallest average distance and the largest average clustering. arXiv 1007.4031.

    Google Scholar 

  8. Barthelemy, M., & Amaral, L. A. N. (1999). Small-world networks: Evidence for a crossover picture. Physical Review Letters, 82, 3180–3183.

    Article  ADS  Google Scholar 

  9. Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, O., Smith, K. M., Hill, R. S., Gold, B., Halpern, M., Komatsu, E., Nolta, M. R., Page, L., Spergel, D. N., Wollack, E., Dunkley, J., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., & Wright, E. L. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. arXiv 1212.5225v3 [astro-ph.CO]

    Google Scholar 

  10. Benson, D. L., & Huntley, G. W. (2012). Building and remodeling synapses. Hippocampus, 22, 954–968.

    Article  Google Scholar 

  11. Boergens, K. M., & Denk, W. (2013). Controlling FIB-SBEM slice thickness by monitoring the transmitted ion beam. Journal of Microscopy, 252, 258–262.

    Article  Google Scholar 

  12. Bollobás, B. (1998). Modern graph theory. New York: Springer.

    Book  MATH  Google Scholar 

  13. Bourne, J. N., & Harris, K. M. (2011). Nanoscale analysis of structural synaptic plasticity. Current Opinion in Neurobiology, 22, 1–11. doi:10.1016/j.conb.2011.10.019.

    Google Scholar 

  14. Briggman, K. L., & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology, 16, 562–570.

    Article  Google Scholar 

  15. Briggman, K. L., Helmstaedter, M., & Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature, 471, 138–188.

    Article  Google Scholar 

  16. Brill, M. H. (1990). Mesopic color matching: Some theoretical issues. Journal of the Optical Society of America A. Optics and Image Science, 7, 2048–2051.

    Article  MathSciNet  ADS  Google Scholar 

  17. Buck, S. L. (1997). Influence of rod signals on hue perception: Evidence from successive scotopic contrast. Vision Research, 37, 1295–3101.

    Article  Google Scholar 

  18. Buck, S. L. (2004). Rod-cone interactions in human vision. In: L. M. Chalupa & J. Werner (Eds.) Visual neurosciences (Vol. 1, pp. 863–878). MIT Press, Cambridge

    Google Scholar 

  19. Buck, S. L., Stefurak, D. L., Moss, C., & Regal, D. (1984). The time-course of rod-cone interaction. Vision Research, 24, 543–548.

    Article  Google Scholar 

  20. Burns, R., Roncal, W. G., Kleissas, D., Lillaney, K., Manavalan, P., Perlman, E., Berger, D. R., Bock, D. D., Chung, K., Grosenick, L., Kasthuri, N., Weiler, N. C., Deisseroth, K., Kazhdan, M., Lichtman, J., Reid, R. C., Smith, S. J., Szalay, A. S., Vogelstein, J. T., & Vogelstein, R. J. (2013). The open connectome project data cluster: Scalable analysis and vision for high-throughput neuroscience. Science Statistics Database Management. doi: 10.1145/2484838.2484870.

    Google Scholar 

  21. Chua, J., Nivison-Smith, L., Tan, S. S., & Kalloniatis, M. (2013). Metabolic profiling of the mouse retina using amino acid signatures: Insight into developmental cell dispersion patterns. Experimental Neurology, 250, 74–93.

    Article  Google Scholar 

  22. Cohen, A. I. (1965). Some electron microscopic observations on inter-receptor contacts in the human and macaque retinae. Journal of Anatomy, 99, 595–610.

    Google Scholar 

  23. Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory IT, 13, 21–27.

    Article  MATH  Google Scholar 

  24. Deisseroth, K. (2011). Optogenetics. Nature Methods, 8, 26–29.

    Article  Google Scholar 

  25. Diestel, R. (2005). Graph theory (3rd edn.). Heidelberg: Springer-Verlag.

    MATH  Google Scholar 

  26. Dumitrescu, O. N., Pucci, F. G., Wong, K. Y., & Berson, D. M. (2009). Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells. Journal of Comparative Neurology, 517, 226–244.

    Article  Google Scholar 

  27. Famiglietti, E. V. J., & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research, 84, 293–300.

    Article  Google Scholar 

  28. Fiala, J. C. (2005). Reconstruct: A free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.

    Article  MathSciNet  Google Scholar 

  29. Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews, 39, 29–54.

    Article  Google Scholar 

  30. Frumkes, T. E., & Eysteinsson, T. (1988). The cellular basis for suppressive rod-cone interaction. Visual Neuroscience, 1, 263–273.

    Article  Google Scholar 

  31. Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., Morse, T. M., Davison, A. P., Ray, S., Bhalla, U. S., Barnes, S. R., Dimitrova, Y. D., & Silver, R. A. (2010). NeuroML: A language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology, 6, e1000815.

    Article  ADS  Google Scholar 

  32. Goldberg, S. H., Frumkes, T. E., & Nygaard, R. W. (1983). Inhibitory influence of unstimulated rods in the human retina: Evidence provided by examining cone flicker. Science, 221, 180–182.

    Article  ADS  Google Scholar 

  33. Google. (2010). KML Reference—KML—Google Code. Google, Inc.

    Google Scholar 

  34. Han, Y., & Massey, S. (2005). Electrical synapses in retinal ON cone bipolar cells: Subtype-specific expression of connexins. Proceedings of the National Academy of Sciences of the United States of America, 102, 13313–13318.

    Google Scholar 

  35. Harary, F., & Palmer, E. M. (1973). Graphical enumeration. New York: Academic Press.

    MATH  Google Scholar 

  36. Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of eocortical Lalyer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology, 7, e1002107.

    Article  ADS  Google Scholar 

  37. Helmstaedter, M., Briggman, K. L., & Denk, W. (2008). 3D structural imaging of the brain with photons and electrons. Current Opinion in Neurobiology, 18, 633–641.

    Article  Google Scholar 

  38. Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500, 168–174.

    Article  ADS  Google Scholar 

  39. Hendrickson, P. J., Yu, G. J., Robinson, B. S., Song, D., & Berger, T. W. (2012). Towards a large-scale biologically realistic model of the hippocampus. Conference proceedings:... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2012, pp. 4595–4598.

    Google Scholar 

  40. Heuser, J. (2000). How to convert a traditional electron microscopy laboratory to digital imaging: Follow the ‘Middle Road’. Traffic (Copenhagen, Denmark), 1, 614–621.

    Article  Google Scholar 

  41. Hines, M. L., & Carnevale, N. T. (2001). NEURON: A tool for neuroscientists. The Neuroscientist, 7, 123–135.

    Article  Google Scholar 

  42. Hoshi, H., Liu, W.-L., Massey, S. C., & Mills, S. L. (2009). ON inputs to the OFF layer: Bipolar cells that break the stratification rules of the retina. Journal of Neuroscience, 29, 8875–8883. doi:10.1523/jneurosci.0912-09.2009.

    Article  Google Scholar 

  43. Jagadeesh, V., Manjunath, B. S., Anderson, J. R., Jones, B. W., Marc, R. E., & Fisher, S. K. (2013). Robust segmentation based tracing using an adaptive wrapper for inducing priors. IEEE Trans Image Process, 22, 4952–2063.

    Google Scholar 

  44. Jeong, W., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez, A., Reid, C., Lichtman, J., & Pfister, H. (2010). SSECRETT and NeuroTrace: Interactive visualization and analysis tools for large-scale neuroscience datasets. IEEE Computer Graphics and Applications, 30, 58–70.

    Article  Google Scholar 

  45. Jones, B. W., Watt, C. B., Frederick, J. M., Baehr, W., Chen, C. K., Levine, E. M., Milam, A. H., LaVail, M. M., & Marc, R. E. (2003). Retinal remodeling triggered by photoreceptor degenerations. The Journal of Comparative Neurology, 464, 1–16.

    Article  Google Scholar 

  46. Jones, B. W., Kondo, M., Terasaki, H., Watt, C. B., Rapp, K., Anderson, J. R., Lin, Y., Shaw, M. V., Yang, J. H., & Marc, R. E. (2011). Retinal remodeling in the Tg P347 Lrabbit, a large-eye model of retinal degeneration. The Journal of Comparative Neurology, 519, 2713–2733.

    Article  Google Scholar 

  47. Kalloniatis, M., Marc, R. E., & Murry, R. F. (1996). Amino acid signatures in the primate retina. The Journal of Neuroscience: The Official journal of the Society for Neuroscience, 16, 6807–6829.

    Google Scholar 

  48. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum.

    Chapter  Google Scholar 

  49. Kleinfeld, D., Bharioke, A., Blinder, P., Bock, D. D., Briggman, K. L., Chklovskii, D. B., Denk, W., Helmstaedter, M., Kaufhold, J. P., Lee, W. C., Meyer, H. S., Micheva, K. D., Oberlaender, M., Prohaska, S., Reid, R. C., Smith, S. J., Takemura, S., Tsai, P. S., & Sakmann, B. (2011). Large-scale automated histology in the pursuit of connectomes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 16125–16138.

    Article  Google Scholar 

  50. Knott, G., Marchman, H., Wall, D., & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 2959–2964.

    Article  Google Scholar 

  51. Kolb, H. (1977). The organization of the outer plexiform layer in the retina of the cat: Electron microscopic observations. Journal of Neurocytology, 6, 131–153.

    Article  Google Scholar 

  52. Kolb, H., & Famiglietti, E. V. (1974a). Rod and cone pathways in the inner plexiform layer of cat retina. Science, 186, 47–49.

    Article  ADS  Google Scholar 

  53. Kolb, H., & Famiglietti, E. V. J. (1974b). Rod and cone pathways in the retina of the cat. Invest Ophthal, 15, 935–946.

    Google Scholar 

  54. Lange, G., Denny, N., & Frumkes, T. E. (1997). Suppressive rod-cone interactions: Evidence for separate retinal (temporal) and extraretinal (spatial) mechanisms in achromatic vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14, 2487–2498.

    Article  ADS  Google Scholar 

  55. Lauritzen, J. S., Anderson, J. R., Jones, B. W., Watt, C. B., Mohammed, S., Hoang, J. V., & Marc, R. E. (2012). ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina. The Journal of Comparative Neurology, 521, 977–1000.

    Article  Google Scholar 

  56. Lauritzen, J. S., Hoang, J. V., Sigulinsky, C., Jones, B. W., Anderson, J. R., Watt, C. B., Mohammed, S., & Marc, R. E. (2013). Tiered cross-class bipolar cell gap junctional coupling in the rabbit retina. Invest Ophthal, 54, 1754.

    Google Scholar 

  57. Lee, S. C., Cowgill, E. J., Al-Nabulsi, A., Quinn, E. J., Evans, S. M., & Reese, B. E. (2011). Homotypic regulation of neuronal morphology and connectivity in the mouse retina. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 14126–14133.

    Article  Google Scholar 

  58. Li, X., Kamasawa, N., Ciolofan, C., Olson, C. O., Lu, S., Davidson, K. G. V., Yasumura, T., Shigemoto, R., Rash, J. E., & Nagy, J. I. (2008). Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bi-homotypic gap junctions, with scaffolding contributed by zonula occludens-1. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 9769–9789.

    Article  Google Scholar 

  59. Lynn, B. D., Li, X., & Nagy, J. I. (2012). Under construction: Building the macromolecular superstructure and signaling components of an electrical synapse. The Journal of Membrane Biology, 245, 303–317.

    Article  Google Scholar 

  60. MacNeil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E., & Masland, R. H. (1999). The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. The Journal of Comparative Neurology, 413, 305–326.

    Article  Google Scholar 

  61. MacNeil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E., & Masland, R. H. (2004). The population of bipolar cells in the rabbit retina. The Journal of Comparative Neurology, 472, 73–86.

    Article  Google Scholar 

  62. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symposium (pp. 281–297)

    Google Scholar 

  63. Marc, R. E. (2010). Synaptic organization of the retina. In L. A. Levin, S. F. E. Nilsson, J. Ver Hoeve, S. M. Wu, P. L. Kaufman, & A. Alm (Eds.), Adler’s physiology of the eye (pp. 443–458). Elsevier.

    Google Scholar 

  64. Marc, R. E., & Cameron, D. A. (2001). A molecular phenotype atlas of the zebrafish retina. Journal of Neurocytology, 30, 593–654.

    Article  Google Scholar 

  65. Marc, R. E., & Jones, B. W. (2002). Molecular phenotyping of retinal ganglion cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 412–427.

    Google Scholar 

  66. Marc, R. E., & Liu, W. (2000). Fundamental GABAergic amacrine cell circuitries in the retina: Nested feedback, concatenated inhibition, and axosomatic synapses. The Journal of Comparative Neurology, 425(4), 560–582.

    Article  Google Scholar 

  67. Marc, R. E., Liu, W. L., & Muller, J. F. (1988). Gap junctions in the inner plexiform layer of the goldfish retina. Vision Research, 28(1), 9–24.

    Article  Google Scholar 

  68. Marc, R. E., Liu, W. L., Kalloniatis, M., Raiguel, S. F., & van Haesendonck E. (1990). Patterns of glutamate immunoreactivity in the goldfish retina. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 10(12), 4006–4034.

    Google Scholar 

  69. Marc, R. E., Murry, R. F., & Basinger, S. F. (1995). Pattern recognition of amino acid signatures in retinal neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 15(7 Pt 2), 5106–5129.

    Google Scholar 

  70. Marc, R. E., Murry, R. F., Fisher, S. K., Linberg, K. A., Lewis, G. P., & Kalloniatis, M. (1998). Amino acid signatures in the normal cat retina. Investigative Ophthalmology & Visual Science, 39(9), 1685–1693.

    Google Scholar 

  71. Marc, R. E., Jones, B. W., Lauritzen, J. S., Watt, C. B., & Anderson, J. R. (2012). Building retinal connectomes. Current Opinion in Neurobiology, 22, 568–574.

    Article  Google Scholar 

  72. Marc, R. E., Anderson, J. R., Jones, B. W., Watt, C. B., & Lauritzen, J. S. (2013). Retinal connectomics: Towards complete, accurate networks. Progress in Retinal and Eye Research, 37, 141–162.

    Article  Google Scholar 

  73. Marc, R. E., Anderson, J. R., Jones, B. W., Sigulinsky, C., Watt, C. B., & Lauritzen, J. S. (2014). The aII amacrine cell connectome: A dense network hub. Front Neural Circuits. doi: 10.3389/fncir.2014.00104.

    Google Scholar 

  74. Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology, 152, 36–51.

    Article  Google Scholar 

  75. Micheva, K. D., & Bruchez, M. P. (2011). The gain in brain: Novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure. Current Opinion in Neurobiology. doi:10.1016/j.conb.2011.08.004.

    Google Scholar 

  76. Micheva, K. D., & Smith, S. J. (2007). Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron, 55, 25–36.

    Article  Google Scholar 

  77. Micheva, K. D., Busse, B., Weiler, N. C., O’Rourke, N., & Smith, S. J. (2010). Single-synapse analysis of a diverse synapse population: Proteomic imaging methods and markers. Neuron, 68, 639–653.

    Article  Google Scholar 

  78. Mikula, S., Trotts, I., Stone, J. M., & Jones, E. G. (2007). Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage, 35(1), 9–15. doi:S1053-8119(06)01176-1 [pii]. 10.1016/j.neuroimage.2006.11.053.

    Article  Google Scholar 

  79. Mizoguchi, A., Nakanishi, H., Kimura, K., Matsubara, K., Ozaki-Kuroda, K., Katata, T., Honda, T., Kiyohara, Y., Heo, K., Higashi, M., Tsutsumi, T., Sonoda, S., Ide, C., & Takai, Y. (2002). Nectin: An adhesion molecule involved in formation of synapses. The Journal of Cell Biology, 156, 555–565.

    Article  Google Scholar 

  80. Morales, J., Rodríguez, A., Rodríguez, J. R., Defelipe, J., & Merchán-Pérez, A. (2013). Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis. Front Neuroanatomy, 7, 20. doi:10.3389/fnana.2013.00020.

    Article  Google Scholar 

  81. Morgan, J. L., & Lichtman, J. W. (2013). Why not connectomics. Nature Methods, 10, 494–500.

    Article  Google Scholar 

  82. Ogita, H., Ritake, Y., Miyoshi, J., & Takai, Y. (2010). Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology. Proceedings. Japan Academy, 86, 621–629.

    Article  ADS  Google Scholar 

  83. Perin, R., Telefont, M., & Markram, H. (2013). Computing the size and number of neuronal clusters in local circuits. Front Neuroanatomy, 7, 1–10.

    Article  Google Scholar 

  84. Prinz, A. A., Bucher, B., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7, 1345–1352.

    Article  Google Scholar 

  85. Raviola, E., & Gilula, N. B. (1975). Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. The Journal of Cell Biology, 65, 192–222.

    Article  Google Scholar 

  86. Reese, B. E. (2008). Mosaics, tiling and coverage by retinal neurons. In: R. H. Masland & T. Albright (Eds.), The senses (Vol. 1, pp. 439–456). Academic Press, San Diego

    Google Scholar 

  87. Rockhill, R. L., Daly, F. J., MacNeil, M. A., Brown, S. P., & Masland, R. H. (2002). The diversity of ganglion cells in a mammalian retina. Journal of Neuroscience, 22, 3831–3843.

    Google Scholar 

  88. Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501–511.

    Article  Google Scholar 

  89. Stabell, B., & Stabell, U. (1998). Chromatic rod-cone interaction during dark adaptation. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15, 2809–2815.

    Article  ADS  Google Scholar 

  90. Stabell, B., & Stabell, U. (2002). Effects of rod activity on color perception with light adaptation. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19, 1249–1258.

    Article  ADS  Google Scholar 

  91. Staehelin, L. A. (1972). Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proceedings of the National Academy of Sciences of the United States of America, 69, 1318–1321.

    Google Scholar 

  92. Stevens, J. K., Davis, T. L., Friedman, N., & Sterling, P. (1980). A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Research, 2, 265–293.

    Article  Google Scholar 

  93. Strettoi, E., Dacheux, R. F., & Raviola, E. (1990). Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. The Journal of Comparative Neurology, 295, 449–466.

    Article  Google Scholar 

  94. Strettoi, E., Raviola, E., & Dacheux, R. F. (1992). Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. The Journal of Comparative Neurology, 325, 152–168.

    Article  Google Scholar 

  95. Tasdizen, T., Koshevoy, P., Grimm, B., Anderson, J. R., Jones, B. W., Whitaker, R., & Marc, R. E. (2010). Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy. Journal Neuroscience Methods, 193, 132–144.

    Article  Google Scholar 

  96. Thomas, L. P., & Buck, S. L. (2006). Foveal and extra-foveal influences on rod hue biases. Visual Neuroscience, 23, 539–542.

    Article  Google Scholar 

  97. Trezona, P. W. (1970). Rod participation in the ‘blue’ mechanism and its effect on colour matching. Vision Research, 10, 317–332.

    Article  Google Scholar 

  98. Trezona, P. W. (1973). The tetrachromatic colour match as a colorimetric technique. Vision Research, 13, 9–25.

    Article  Google Scholar 

  99. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 15775–15786. doi:10.1523/jneurosci.3539–11.2011.

    Article  Google Scholar 

  100. Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J., & Coalson, T. (2011). Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cerebral Cortex, 22, 2241–2262. doi:10.1093/cercor/bhr291.

    Article  Google Scholar 

  101. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small- world’ networks. Nature, 393, 440–442.

    Article  ADS  Google Scholar 

  102. Wong, E., Baur, B., Quader, S., & Huang, C.-H. (2012). Biological network motif detection: Principles and practice. Briefings in Bioinformatics, 13, 202–215. doi:10.1093/bib/bbr033.

    Article  Google Scholar 

  103. Xie, X., Schnieder, M. C., Sánchez-Sinencio, E., & Embabi, S. H. K. (1999). Sound design of low power nested transconductance-capacitance compensation amplifiers. IEEE Electronics Letters, 35, 956–958.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Institutes of Health (EY02576, EY015128, and EY014800), National Science Foundation (0941717), the Thome Foundation, and Research to Prevent Blindness for support. We also thank Shoeb Mohammed for software development, and Hope Morrison, John Vo Hoang, and Noah Nelson for annotation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Marc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marc, R., Jones, B., Sigulinsky, C., Anderson, J., Lauritzen, J. (2015). High-Resolution Synaptic Connectomics. In: Douglass, A. (eds) New Techniques in Systems Neuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12913-6_1

Download citation

Publish with us

Policies and ethics