Skip to main content
  • 674 Accesses

Abstract

In this chapter we present all necessary definitions and preliminary results on cryptographic functions which are used throughout this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. A. Albert. On nonassociative division algebras. Trans. Amer. Math. Soc. 72, pp. 296–309, 1952.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. A. Albert. Generalized twisted fields. Pacific J. Math. 11, pp. 1–8, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Bending, D. Fon-Der-Flaass. Crooked functions, bent functions and distance-regular graphs. Electron. J. Comb., 5 (R34), 1–4, 1998.

    MathSciNet  Google Scholar 

  4. T. Beth and C. Ding. On almost perfect nonlinear permutations. Advances in Cryptology-EUROCRYPT'93, Lecture Notes in Computer Science, 765, Springer-Verlag, New York, pp. 65–76, 1993.

    Google Scholar 

  5. J. Bierbrauer. New semifields, PN and APN functions. Designs, Codes and Cryptography, v. 54, pp. 189–200, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bierbrauer. Commutative semifields from projection mappings. Designs, Codes and Cryptography, 61(2), pp. 187–196, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4, no. 1, pp. 3–72, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Bracken, Z. Zha. On the Fourier Spectra of the Infinite Families of Quadratic APN Functions. Finite Fields and Their Applications 18(3), pp. 537–546, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Bracken, E. Byrne, N. Markin, G. McGuire. Determining the Nonlinearity of a New Family of APN Functions. Applied Algebra, Algebraic Algorithms and Error Correcting Codes, Lecture Notes in Computer Science, Vol 4851, Springer-Verlag, pp. 72–79, 2007.

    MathSciNet  Google Scholar 

  10. C. Bracken, E. Byrne, N. Markin, G. McGuire. On the Walsh Spectrum of a New APN Function. Cryptography and Coding, Lecture Notes in Computer Science, Vol 4887, Springer-Verlag, pp. 92–98, 2007.

    Google Scholar 

  11. C. Bracken, E. Byrne, N. Markin, G. McGuire. New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications 14(3), pp. 703–714, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Bracken, E. Byrne, N. Markin, G. McGuire. On the Fourier spectrum of Binomial APN functions.SIAM journal of Discrete Mathematics, 23(2), pp. 596–608, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Bracken, E. Byrne, N. Markin, G. McGuire. A Few More Quadratic APN Functions. Cryptography and Communications 3(1), pp. 43–53, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. A. Browning, J. F. Dillon, R. E. Kibler, M. T. McQuistan. APN Polynomials and Related Codes. Journal of Combinatorics, Information and System Science, Special Issue in honor of Prof. D.K Ray-Chaudhuri on the occasion of his 75th birthday, vol. 34, no. 1–4, pp. 135–159,2009.

    Google Scholar 

  15. K. A. Browning, J. F. Dillon, M. T. McQuistan, A. J. Wolfe. An APN Permutation in Dimension Six. Post-proceedings of the 9-th International Conference on Finite Fields and Their Applications Fq'09, Contemporary Math., AMS, v. 518, pp. 33–42, 2010.

    Google Scholar 

  16. M. Brinkman and G. Leander. On the classification of APN functions up to dimension five. Proceedings of the International Workshop on Coding and Cryptography 2007 dedicated to the memory of Hans Dobbertin, pp. 39–48, Versailles, France, 2007.

    Google Scholar 

  17. L. Budaghyan. The Simplest Method for Constructing APN Polynomials EA-Inequivalent to Power Functions. Proceedings of First International Workshop on Arithmetic of Finite Fields, WAIFI 2007 Lecture Notes in Computer Science, 4547, pp. 177–188, 2007.

    MathSciNet  Google Scholar 

  18. L. Budaghyan and C. Carlet. Classes of Quadratic APN Trinomials and Hexanomials and Related Structures. IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 2354–2357, May 2008.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Budaghyan and C. Carlet. On CCZ-equivalence and its use in secondary constructions of bent functions. Preproceedings of International Workshop on Coding and Cryptography WCC 2009, pp. 19–36, 2009.

    Google Scholar 

  20. L. Budaghyan and C. Carlet. CCZ-equivalence of single and multi output Boolean functions. Post-proceedings of the 9-th International Conference on Finite Fields and Their Applications Fq'09, Contemporary Math., AMS, v. 518, pp. 43–54, 2010.

    Google Scholar 

  21. L. Budaghyan and T. Helleseth. New perfect nonlinear multinomials over F p2k for any odd prime p. Proceedings of the International Conference on Sequences and Their Applications SETA 2008, Lecture Notes in Computer Science 5203, pp. 403–414, Lexington, USA, Sep. 2008.

    Google Scholar 

  22. L. Budaghyan and T. Helleseth. On Isotopisms of Commutative Presemifields and CCZ-Equivalence of Functions. Special Issue on Cryptography of International Journal of Foundations of Computer Science, v. 22(6), pp. 1243–1258, 2011. Preprint at http://eprint.iacr.org/2010/507

  23. L. Budaghyan and T. Helleseth. New commutative semifields defined by new PN multinomials. Cryptography and Communications: Discrete Structures, Boolean Functions and Sequences, v. 3(1), pp. 1–16, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1141–1152, March 2006.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Budaghyan, C. Carlet, G. Leander. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory, 54(9), pp. 4218–4229, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Budaghyan, C. Carlet, G. Leander. On inequivalence between known power APN functions. Proceedings of the International Workshop on Boolean Functions: Cryptography and Applications, BFCA 2008, Copenhagen, Denmark, May 2008.

    Google Scholar 

  27. L. Budaghyan, C. Carlet, G. Leander. On a construction of quadratic APN functions. Proceedings of IEEE Information Theory Workshop, ITW'09, pp. 374–378, Taormina, Sicily, Oct. 2009.

    Google Scholar 

  28. L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150–159, April 2009.

    Article  MATH  MathSciNet  Google Scholar 

  29. L. Budaghyan, C. Carlet, T. Helleseth, A. Kholosha. Generalized Bent Functions and Their Relation to Maiorana-McFarland Class. Proceedings of the IEEE International Symposium on Information Theory, ISIT 2012, Cambridge, MA, USA, 1–6 July 2012.

    Google Scholar 

  30. L. Budaghyan, C. Carlet, T. Helleseth, A. Kholosha, S. Mesnager. Further Results on Niho Bent Functions. IEEE Trans. Inform. Theory, 58(11), pp. 6979–6985, 2012.

    Article  MathSciNet  Google Scholar 

  31. A. Canteaut, P. Charpin, H. Dobbertin. Weight divisibility of cyclic codes, highly nonlinear functions on \(\mathbb{F}_{2^m}\), and crosscorrelation of maximum-length sequences. SIAM Journal on Discrete Mathematics, 13(1), pp. 105–138, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Canteaut, P. Charpin and H. Dobbertin. Binary m-sequences with three-valued crosscorrelation: A proof of Welch’s conjecture. IEEE Trans. Inform. Theory, 46 (1), pp. 4–8, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Canteaut, P. Charpin, and G. M. Kyureghyan, “A new class of monomial bent functions,“ Finite Fields Appl., vol. 14, no. 1, pp. 221–241, Jan. 2008.

    Google Scholar 

  34. C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Chapter of the monography Boolean Methods and Models, Yves Crama and Peter Hammer eds, Cambridge University Press, pp. 257–397, 2010.

    Google Scholar 

  35. C. Carlet. Vectorial Boolean Functions for Cryptography. Chapter of the monography Boolean Methods and Models, Yves Crama and Peter Hammer eds, Cambridge University Press, pp. 398–469, 2010.

    Google Scholar 

  36. C. Carlet. Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions. Designs, Codes and Cryptography, v. 59(1–3), pp. 89–109, 2011.

    Google Scholar 

  37. C. Carlet and S. Mesnager, “On Dillon’s class H of bent functions, Niho bent functions and o-polynomials,“ J. Combin. Theory Ser. A, vol. 118, no. 8, pp. 2392–2410, Nov. 2011.

    Article  MATH  MathSciNet  Google Scholar 

  38. C. Carlet, P. Charpin and V. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2), pp. 125–156, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  39. F. Chabaud and S. Vaudenay. Links between differential and linear cryptanalysis, Advances in Cryptology -EUROCRYPT'94, LNCS, Springer-Verlag, New York, 950, pp. 356–365, 1995.

    Google Scholar 

  40. P. Charpin, G. Kyureghyan. On a class of permutation polynomials over \(\mathbb{F}_{2^n}\). Proceedings of SETA 2008, Lecture Notes in Computer Science 5203, pp. 368–376, 2008.

    Google Scholar 

  41. P. Charpin and G. M. Kyureghyan. Cubic monomial bent functions: A subclass of \(\mathcal{M}\). SIAM Journal on Discrete Mathematics, vol. 22, no. 2, pp. 650–665, 2008.

    Google Scholar 

  42. Y. M. Chee, Y. Tan, and X. D. Zhang, “Strongly regular graphs constructed from p-ary bent functions,” J. Algebraic Combin., vol. 34, no. 2, pp.251–266, Sep. 2011.

    Article  MATH  MathSciNet  Google Scholar 

  43. S. D. Cohen and M. J. Ganley. Commutative semifields, two-dimensional over there middle nuclei. J. Algebra 75, pp. 373–385, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  44. R. S. Coulter and M. Henderson. Commutative presemifields and semifields. Advances in Math. 217, pp. 282–304, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  45. R. S. Coulter and R. W. Matthews. Planar functions and planes of Lenz-Barlotti class II. Des., Codes, Cryptogr. 10, pp. 167–184, 1997.

    Google Scholar 

  46. R. S. Coulter, M. Henderson, P. Kosick. Planar polynomials for commutative semifields with specified nuclei. Des. Codes Cryptogr. 44, pp. 275–286, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  47. T. Cusick and H. Dobbertin. Some new 3-valued crosscorrelation functions of binary m-sequences. IEEE Trans. Inform. Theory, 42, pp.1238–1240, 1996.

    Google Scholar 

  48. J. Daemen andV. Rijmen. AES proposal: Rijndael. http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf, 1999.

  49. P. Dembowski and T. Ostrom. Planes of order n with collineation groups of order n 2. Math. Z. 103, pp. 239–258, 1968.

    Google Scholar 

  50. L. E. Dickson. Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc 7, pp. 370–390, 1906.

    Article  MATH  MathSciNet  Google Scholar 

  51. L. E. Dickson. On commutative linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc 7, pp. 514–522, 1906.

    Article  MATH  MathSciNet  Google Scholar 

  52. L. E. Dickson. Linear algebras with associativity not assumed. Duke Math. J. 1, pp. 113–125, 1935.

    Article  MathSciNet  Google Scholar 

  53. J. F. Dillon. A survey of bent functions. NSA Technical Journal Special Issue, pp. 191–215, 1972.

    Google Scholar 

  54. J. F. Dillon. Elementary Hadamard Difference sets. Ph. D. Thesis, Univ. of Maryland, 1974.

    Google Scholar 

  55. J. F. Dillon and H. Dobbertin, “New cyclic difference sets with Singer parameters,“ Finite Fields Appl., vol. 10, no. 3, pp. 342–389, Jul. 2004.

    Article  MATH  MathSciNet  Google Scholar 

  56. C. Ding and J. Yuan. A new family of skew Paley-Hadamard difference sets. J. Comb. Theory Ser. A 133, pp. 1526–1535, 2006.

    Article  MathSciNet  Google Scholar 

  57. H. Dobbertin. One-to-One Highly Nonlinear Power Functions on \(GF(2^n)\). Appl. Algebra Eng. Commun. Comput. 9 (2), pp. 139–152, 1998.

    Google Scholar 

  58. H. Dobbertin. Almost perfect nonlinear power functions over \(GF(2^n)\): the Niho case. Inform. and Comput., 151, pp. 57–72, 1999.

    Google Scholar 

  59. H. Dobbertin. Almost perfect nonlinear power functions over \(GF(2^n)\): the Welch case. IEEE Trans. Inform. Theory, 45, pp. 1271–1275, 1999.

    Google Scholar 

  60. H. Dobbertin. Almost perfect nonlinear power functions over \(GF(2^n)\): a new case for n divisible by 5. Proceedings of Finite Fields and Applications FQ5, pp. 113–121, 2000.

    Google Scholar 

  61. H. Dobbertin. Private communication. 2004.

    Google Scholar 

  62. H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke, and P. Gaborit, “Construction of bent functions via Niho power functions,“ J. Combin. Theory Ser. A, vol. 113, no. 5, pp. 779–798, Jul. 2006.

    Article  MATH  MathSciNet  Google Scholar 

  63. Y. Edel. Quadratic APN functions as subspaces of alternating bilinear forms. Contact Forum Coding Theory and Cryptography III, Belgium (2009), pp. 11–24, 2011.

    Google Scholar 

  64. Y. Edel and A. Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications 3, no. 1, pp. 59–81, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  65. Y. Edel, G. Kyureghyan and A. Pott. A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 744–747, Feb. 2006.

    Article  MATH  MathSciNet  Google Scholar 

  66. M. J. Ganley. Central weak nucleus semifields. European J. Combin.2, pp. 339–347, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  67. R. Gold. Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory, 14, pp. 154–156, 1968.

    Article  MATH  Google Scholar 

  68. G. Gong, T. Helleseth, H. Hu, and A. Kholosha. On the dual of certain ternary weakly regular bent functions. IEEE Trans. Inf. Theory, 58(4), pp. 2237–2243, 2012.

    Article  MathSciNet  Google Scholar 

  69. T. Helleseth and A. Kholosha. Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2018–2032, May 2006.

    MATH  MathSciNet  Google Scholar 

  70. T. Helleseth and A. Kholosha. On the dual of monomial quadratic p-ary bent functions. Sequences, Subsequences, and Consequences, ser. Lecture Notes in Computer Science, S. Golomb, G. Gong, T. Helleseth, and H.-Y. Song, Eds., vol. 4893. Berlin: Springer-Verlag, 2007, pp. 50–61.

    Google Scholar 

  71. T. Helleseth and A. Kholosha. Sequences, bent functions and Jacobsthal sums. Sequences and Their Applications—SETA 2010, ser. Lecture Notes in Computer Science, C. Carlet and A. Pott, Eds., vol. 6338. Berlin: Springer-Verlag, 2010, pp. 416–429.

    Google Scholar 

  72. T. Helleseth and A. Kholosha. New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4646–4652, Sep. 2010.

    MathSciNet  Google Scholar 

  73. T. Helleseth and A. Kholosha. Crosscorrelation of m-sequences, exponential sums, bent functions and Jacobsthal sums. Cryptography and Communications, vol. 3, no. 4, pp. 281–291, Dec. 2011.

    Google Scholar 

  74. T. Helleseth and D. Sandberg. Some power mappings with low differential uniformity. Applic. Alg. Eng., Commun. Comput. 8, pp. 363–370, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  75. T. Helleseth, C. Rong and D. Sandberg. New families of almost perfect nonlinear power mappings. IEEE Trans. in Inf. Theory 45, pp. 475–485, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  76. T. Helleseth, H. D. L. Hollmann, A. Kholosha, Z. Wang, and Q. Xiang, “Proofs of two conjectures on ternary weakly regular bent functions,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5272–5283, Nov. 2009.

    Google Scholar 

  77. T. Helleseth, A. Kholosha, and S. Mesnager, “Niho bent functions and Subiaco hyperovals,” in Theory and Applications of Finite Fields, ser. Contemporary Mathematics, M. Lavrauw, G. L. Mullen, S. Nikova, D. Panario, and L. Storme, Eds. Providence, Rhode Island: American Mathematical Society, 2012.

    Google Scholar 

  78. H. Hollmann and Q. Xiang. A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. Finite Fields and Their Applications 7, pp. 253–286, 2001.

    Google Scholar 

  79. X.-D. Hou. Affinity of permutations of \(\mathbb{F}_{2^n}\). Proceedings of the Workshop on the Coding and Cryptography 2003, Augot, Charpin and Kabatianski eds, pp. 273–280, 2003.

    Google Scholar 

  80. X.-D. Hou.'p-Ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl., vol. 10, no. 4, pp. 566–582, Oct. 2004.

    Google Scholar 

  81. H. Janwa and R. Wilson. Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. Proceedings of AAECC-10, LNCS, vol. 673, Berlin, Springer-Verlag, pp. 180–194, 1993.

    Google Scholar 

  82. T. Kasami. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control, 18, pp. 369–394, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  83. D. E. Knuth. Finite semifields and projective planes. J. Algebra 2, pp. 182–217, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  84. P. V. Kumar, R. A. Scholtz, and L. R. Welch, “Generalized bent functions and their properties,” J. Combin. Theory Ser. A, vol. 40, no. 1, pp. 90–107, Sep. 1985.

    Article  MATH  MathSciNet  Google Scholar 

  85. G. Lachaud and J. Wolfmann. The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory, vol. 36, pp. 686–692, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  86. P. Langevin, G. Leander. Counting all bent functions in dimension eight 99270589265934370305785861242880. Des. Codes Cryptography59(1–3), pp. 193–205, 2011.

    Google Scholar 

  87. G. Leander. Monomial bent functions. IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 738–743, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  88. G. Leander and A. Kholosha, “Bent functions with \(2^r\) Niho exponents,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5529–5532, Dec. 2006.

    Article  MATH  MathSciNet  Google Scholar 

  89. G. Leander and P. Langevin. On exponents with highly divisible Fourier coefficients and conjectures of Niho and Dobbertin. 2007.

    Google Scholar 

  90. Y. Li, M. Wang. Permutation polynomials EA-equivalent to the inverse function over \(GF(2^n)\). Cryptography and Communications 3(3), pp. 175–186, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  91. Y. Li, M. Wang. The Nonexistence of Permutations EA-Equivalent to Certain AB Functions. IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 672–679, 2013.

    MathSciNet  Google Scholar 

  92. G. Lunardon, G. Marino, O. Polverion, R. Trombetti. Symplectic spreads and quadric Veroneseans. Manuscript, 2009.

    Google Scholar 

  93. M. Matsui. Linear cryptanalysis method for DES cipher. Advances in Cryptology-EUROCRYPT'93, LNCS, Springer-Verlag, pp. 386–397, 1994.

    Google Scholar 

  94. G. Menichetti. On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. J. Algebra 47, pp. 400–410, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  95. K. Minami and N. Nakagawa. On planar functions of elementary abelian p-group type. Submitted.

    Google Scholar 

  96. Y. Niho. Multi-valued cross-correlation functions between two maximal linear recursive sequences. Ph.D. dissertation, Dept. Elec. Eng., Univ. Southern California. [USCEE Rep. 409], 1972.

    Google Scholar 

  97. K. Nyberg. Perfect nonlinear S-boxes. Advances in Cryptography, EUROCRYPT'91, Lecture Notes in Computer Science 547, pp. 378–386, 1992.

    Google Scholar 

  98. K. Nyberg. Differentially uniform mappings for cryptography. Advances in Cryptography, EUROCRYPT'93, Lecture Notes in Computer Science 765, pp. 55–64, 1994.

    Google Scholar 

  99. K. Nyberg. S-boxes and Round Functions with Controllable Linearity and Differential Uniformity. Proceedings of Fast Software Encryption 1994, LNCS 1008, pp. 111–130, 1995.

    Google Scholar 

  100. T. Penttila and B. Williams. Ovoids of parabolic spaces. Geom. Dedicata 82, pp. 1–19, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  101. A. Pott, Y. Zhou. CCZ and EA equivalence between mappings over finite Abelian groups. Des. Codes Cryptography 66(1–3), pp. 99–109, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  102. A. Pott, Y. Tan, T. Feng, and S. Ling. Association schemes arising from bent functions. Des. Codes Cryptogr., vol. 59, no. 1–3, pp. 319–331, Apr. 2011.

    Article  MATH  MathSciNet  Google Scholar 

  103. O. S. Rothaus. On “bent” functions. J. Combin. Theory Ser. A, vol. 20, no. 3, pp. 300–305, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  104. V. Sidelnikov. On mutual correlation of sequences. Soviet Math. Dokl., 12, pp. 197–201, 1971.

    Google Scholar 

  105. Y. Tan, A. Pott, and T. Feng. Strongly regular graphs associated with ternary bent functions. J. Combin. Theory Ser. A, vol. 117, no. 6, pp. 668–682, Aug. 2010.

    Article  MATH  MathSciNet  Google Scholar 

  106. E.R. van Dam, D. Fon-Der-Flaass. Codes, graphs, and schemes from nonlinear functions. European J. Combin. 24, 85–98, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  107. G. Weng. Private communications, 2007.

    Google Scholar 

  108. G. Weng, X. Zeng. Further results on planar DO functions and commutative semifields. Des. Codes Cryptogr. 63, pp. 413–423, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  109. S. Yoshiara. Equivalence of quadratic APN functions. J. Algebr. Comb. 35, pp. 461–475, 2012.

    Article  MathSciNet  Google Scholar 

  110. Y. Yu, M. Wang, Y. Li. A matrix approach for constructing quadratic APN functions. Pre-proceedings of the International Conference WCC 2013, Bergen, Norway, 2013.

    Google Scholar 

  111. Y. Zhou. A note on the isotopism of commutative semifields. Preprint, 2010.

    Google Scholar 

  112. Z. Zha, G. Kyureghyan, X. Wang. Perfect nonlinear binomials and their semifields. Finite Fields and Their Applications 15(2), pp. 125–133, 2009.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilya Budaghyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Budaghyan, L. (2014). Generalities. In: Construction and Analysis of Cryptographic Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-12991-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12991-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12990-7

  • Online ISBN: 978-3-319-12991-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics