Skip to main content

Cold-Active β-Galactosidases: Sources, Biochemical Properties and Their Biotechnological Potential

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Abstract

β-d-Galactosidases have been studied extensively in terms of their application to a variety of industrial technologies. To date, considerable research efforts have been devoted to characterization of new cold-active β-D-galactosidases which were isolated directly from selected species of bacteria and yeasts, as well as with the use of metagenomic approaches. This chapter will provide a review of current research towards cold-active β-D-galactosidases, focusing on the evaluation of the biochemical properties of this group of enzymes and their biotechnological potential in terms of their application to the enzymatic hydrolysis of lactose in milk and milk-based foodstuffs for people with lactose intolerance; the enzymatic synthesis of galactooligosaccharides and heterooligosaccharides (e.g., lactulose); the enzymatic synthesis of alkyl glycosides and nonionic surfactants, which can be used in chemical and pharmaceutical industries; and the enzymatic synthesis of functional food ingredients such as d-tagatose, which is a low-calorie, tooth-friendly sweetener that can be used in confectionery, beverages and dietary products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beadle JR, Saunders JP, Wajda TJ Jr. Process for manufacturing tagatose. US Patent 5,002,612, 26

    Google Scholar 

  • Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835

    Article  PubMed  Google Scholar 

  • Boon MA, Janssen AEM, van’t Riet K (2000) Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme Microb Techol 26:271–281

    Article  CAS  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd OS, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cieśliński H, Kur J, Białkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from antarctic bacterium Pseudoalteromonas sp. 22B. Protein Expr Purif 39:27–34

    Article  PubMed  Google Scholar 

  • Coker JA, Brenchley JE (2006) Protein engineering of a cold-active beta-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity. Extremophiles 10:515–524

    Article  CAS  PubMed  Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JM, Brenchley JE (1999) Biochemical and phylogenetic analyses of cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl Environ Microbiol 65:5443–5450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JM, Brenchley JE (2001) Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA. Appl Environ Microbol 67:5094–5099

    Article  CAS  Google Scholar 

  • Coté A, Brown WA, Cameron D, van Walsum GP (2004) Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol. J Dairy Sci 87:1608–1620

    Article  PubMed  Google Scholar 

  • Cruz R, Cruz VD, Belote JG, Khenayfes MD, Dorta C, Oliveira LHD (1999) Properties of a new fungal beta-galactosidase with potential application in the dairy industry. Rev Microbiol 30:265–271

    Article  CAS  Google Scholar 

  • Di Lauro B, Strazzulli A, Perugino G, La Cara F, Bedini E, Corsaro MM, Rossi M, Moracci M (2008) Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. Biochim Biophys Acta 1784:292–301

    Article  PubMed  Google Scholar 

  • Ensor M, Banfield AB, Smith RR, Wiliams J, Lodder RA (2015) Safety and efficacy of d-tagatose in glycemic control in subjects with type 2 diabetes. J Endocrinol Diab Obes 3:1065

    Google Scholar 

  • Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R (2002) β-Galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Google Scholar 

  • Guimaraes WV, Dudey GL, Ingram LO (1992) Fermentation of sweet whey by ethanologenic Escherichia coli. Biotechnol Bioeng 40:41–45

    Article  CAS  PubMed  Google Scholar 

  • Gutshall K, Trimbur D, Kasmir J (1995) Analysis of a novel gene and beta-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J Bacteriol 177:1981–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutshall K, Wang K, Brenchley JE (1997) A novel Arthrobacter β-galactosidase with homology to eucaryotic β-galactosidases. J Bacteriol 179:3064–3067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harju M (1987) Lactose hydrolysis. Bull Int Dairy Fed 212:50–54

    CAS  Google Scholar 

  • Harju M, Kallioinen H, Tossavainen O (2012) Lactose hydrolysis and other conversions in dairy products: technological aspects. Int Dairy J 22:104–109

    Article  CAS  Google Scholar 

  • Hildebrandt P, Wanarska M, Kur J (2009) A new cold-adapted beta-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties. BMC Microbiol 9:151

    Google Scholar 

  • Hoyoux A, Francois JM, Dubois P, Baise E, Jennes I, Genicot S, Gerday C. Cold-active beta-galactosidase, the process for its preparation and the use thereof. US Patent 6,727,084 B1

    Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Franc JM, Baise E, Feller G, Gerday C (2001) Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JM, Li H, Cao LX, Wu PC, Zhang CT, Sang SL, Zhang XY, Chen MJ, Lu JQ, Liu YH (2007) Molecular cloning and characterization of the gene encoding cold-active beta-galactosidase from a psychrotrophic and halotolerant Planococcus sp. L4. J Agric Food Chem 55:2217–2224

    Article  CAS  PubMed  Google Scholar 

  • Johansen AG, Vegarud GE, Skeie S (2002) Seasonal and regional variation in the composition of whey from Norwegian Cheddar-type and Dutch-type cheeses. Int Dairy J 12:621–629

    Article  CAS  Google Scholar 

  • Juers DH, Matthews BW, Huber RE (2012) LacZ beta-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurado E, Camacho F, Luzόn G, Vicaria JM (2002) A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis. Enzyme Microb Technol 31:300–309

    Article  CAS  Google Scholar 

  • Karasová-Lipovová P, Strnad H, Spiwok V, Malá S, Králová B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active b-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb Technol 33:836–844

    Article  Google Scholar 

  • Kosugi A, Murashima K, Doi RH (2002) Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol 184:6859–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kren V, Sedmera P, Havlicek V, Fiserova A (1992) Enzymatic galactosylation of ergotalkaloids. Tetrahedron Lett 47:7233–7236

    Article  Google Scholar 

  • Ladero M, Perez MT, Santos A, Garcia-Ochoa F (2003) Hydrolysis of lactose by free and immobilized beta-galactosidase from Thermus sp. strain T2. Biotechnol Bioeng 81:241–252

    Google Scholar 

  • Lee JH, Kim YS, Yeom SJ, Oh DK (2011) Characterization of a glycoside hydrolase family 42 β-galactosidase from Deinococcus geothermalis. Biotechnol Lett 33:577–583

    Article  CAS  PubMed  Google Scholar 

  • Levin GV (2002) Tagatose, a new GRAS sweetener and health product. J Med Food 5:23–36

    Article  CAS  PubMed  Google Scholar 

  • Liu WY, Shi YW, Wang XQ, Wang Y, Wei CQ, Lou K (2008) Isolation and identification of a strain producing cold-adapted β-galactosidase, and purification and characterisation of the enzyme. Czech J Food Sci 26:284–290

    CAS  Google Scholar 

  • Lu Y, Levin GV, Donner TW (2008) Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes Metab 10:109–134

    Article  CAS  PubMed  Google Scholar 

  • Makowski K, Białkowska M, Szczesna-Antczak M, Kalinowska H, Kur J, Cieslinski H, Turkiewicz M (2007) Immobilized preparation of cold-adaptedand halotolerant antarctic β-galactosidase as a highlystable catalyst in lactose hydrolysis. FEMS Microbiol Ecol 59:535–542

    Article  CAS  PubMed  Google Scholar 

  • Makowski K, Białkowska A, Olczak J, Kur J, Turkiewicz M (2009) Antarctic, cold-adapted β-galactosidase of Pseudoalteromonas sp. 22b as an effective tool for alkyl galactopyranosides synthesis. Enzyme Microbial Technol 44:59–64

    Article  CAS  Google Scholar 

  • Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Marine Biotechnol 9:293

    Article  CAS  Google Scholar 

  • Mehaia MA, Alverez J, Cheryan M (1993) Hydrolysis of whey permeate lactose in a continuous stirred tank membrane reactor. Int Dairy J 3:179–192

    Article  CAS  Google Scholar 

  • Mlichová Z, Rosenberg M (2006) Current trends of β-galactosidase application in food technology. J Food Nutr Res 45:47–54

    Google Scholar 

  • Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N (2006a) Purification and molecular characterization of cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72:720–725

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M, Miyaji T, Takano K, Tomizuka N (2006b) Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Google Scholar 

  • Nath A, Mondal S, Chakraborty S, Bhattacharjee C, Chowdhury R (2014) Production, purification, characterization, immobilization, and application of β-galactosidase: a review. Asia-Pac J Chem Eng 9:330–348

    Article  CAS  Google Scholar 

  • Oh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Guimarães PM, Domingues L (2011) Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol Adv 29:600

    Article  CAS  PubMed  Google Scholar 

  • Onishi N, Tanaka T (1996) Purification and properties of a galacto- and gluco-oligosaccharide-producing beta-glycosidase from Rhodotorula minuta IFO879. J Ferment Bioeng 82:439–443

    Article  CAS  Google Scholar 

  • Pawlak A, Wanarska M, Popinigis A, Kur J. β-d-galaktozydaza Arthrobacter sp. S3*, β-d-galaktozydaza Arthrobacter sp. 32cB, sekwencje nukleotydowe szczepu Arthrobacter sp. S3* i Arthrobacter sp. 32cB kodujące β-d-galaktozydazę oraz sposób wytwarzania mleka o obniżonej zawartości laktozy, galaktooligosacharydów, heterooligosacharydów i glikozylowanych związków chemicznych z wykorzystaniem tych enzymów. Patent application no: PL 407,475

    Google Scholar 

  • Pawlak-Szukalska A, Wanarska M, Popinigis AT, Kur J (2014) A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – gene cloning, purification and characterization. Process Biochem 49:2122–2133

    Google Scholar 

  • Poltorak OM, Chukhrai ES, Pilipenko OS, Atyaksheva LF, Beregalov AE (2007) A comparative study of the structure and properties of β-galactosidases. Russ J Phys Chem A 81:808–812

    Article  CAS  Google Scholar 

  • Rahim KA, Lee BH (1991) Specificity, inhibitory studies, and oligosaccharide formation by beta-galactosidase from psychrotrophic Bacillus subtilis KL88. J Dairy Sci 74:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Saishin N, Ueta M, Wada A, Yamamoto I (2010) Properties of β-galactosidase purified from Bifidobacterium longum subsp. longum JCM 7052 grown on gum arabic. Int J Biol Macromol 10:23–31

    Google Scholar 

  • Santos A, Ladero M, García-Ochoa F (1998) Kinetic modeling of lactose hydrolysis by a β-galactosidase from Kluyveromyces fragilis. Enzyme Microb Technol 22:558–567

    Article  CAS  Google Scholar 

  • Scheckermann C, Wagner F, Fischer L (1997) Galactosylation of antibiotics using the beta-galactosidase from Aspergillus oryzae. Enzyme Microb Technol 20:629–634

    Article  CAS  Google Scholar 

  • Schmidt M, Stougaard P (2010) Identification, cloning an expression of a cold-active β-galactosidase from a novel arctic bacterium, Alkalilactibacillus ikkense. Environ Technol 3:1107–1114

    Article  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu R, Shimabayashi H, Moriwaki M (2006) Enzymatic production of highly soluble myricitrin glycosides using beta-galactosidase. Biosci Biotechnol Biochem 70:940–948

    Article  CAS  PubMed  Google Scholar 

  • Song C, Liu G-L, Xu J-L, Chi Z-M (2010) Purification and characterization of extracellular β-galactosidase from the psychrotolerant yeast Guehomyces pullulans 17–1 isolated from sea sediment in Antarctica. Process Biochem 45:954–960

    Article  CAS  Google Scholar 

  • Sørensen HP, Porsgaard TK, Kahn RA, Stougaard P, Mortensen KK, Johnsen MG (2006) Secreted β-galactosidase from Flavobacterium sp. isolated from low-temperature environment. Appl Microbiol Biotechnol 70:548–557

    Article  PubMed  Google Scholar 

  • Stevenson DE, Stanley RA, Furneaux RH (1993) Optimization of alkyl β-d-galactopyranoside synthesis from lactose using commercially available β-galactosidases. Biotechnol Bioeng 42:657–666

    Google Scholar 

  • Stougaard P, Schmidt M. Cold-active beta-galactosidase, a method of producing same and use of such enzyme. US 8,288,143 B2

    Google Scholar 

  • Torres MJ, Lee BH (1995) Cloning and expression of β-galactosidase from psychotrophic Bacillus subtilis KL88 into Escherichia coli. Biotechnol Lett 17:123–128

    Google Scholar 

  • Trimbur D, Gutshall K, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active-galactosidase. Appl Environ Microbiol 60:4544–4552

    Google Scholar 

  • Turkiewicz M, Kur J, Białkowska A, Cieśliński H, Kalinowska H, Bielecki S (2003) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. Biomol Eng 20:317–324

    Article  CAS  PubMed  Google Scholar 

  • Van de Voorde I, Goiris K, Syryn E, Van den Bussche C, Aerts G (2014) Evaluation of the cold-active Pseudoalteromonas haloplanktis β-galactosidase enzyme for lactose hydrolysis in whey permeate as primary step of d-tagatose production. Process Biochem 49:2134–2140

    Article  Google Scholar 

  • Van Laere KMJ, Abee T, Schols HA, Beldman G, Voragen AGJ (2000) Characterization of a novel beta-galactosidase from Bifidobacterium adolescentis DSM 20083 active towards transgalactooligosaccharides. Appl Environ Microbiol 66:1379–1384

    Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Fact 13:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19:17–29

    Article  CAS  PubMed  Google Scholar 

  • Vetere A, Paoletti S (1998) Separation and characterization of three beta-galactosidases from Bacillus circulans. BBA Gen Subj 1380:223–231

    Article  CAS  Google Scholar 

  • Wanarska M, Hildebrandt PŁ, Kur JW. Sposób otrzymywania d-galaktozy z laktozy. Patent no: PL217,153

    Google Scholar 

  • Wanarska M, Hildebrandt PŁ, Kur JW. Sposób wytwarzania d-tagatozy z laktozy z wykorzystaniem rekombinantowego szczepu drożdży Pichia pastoris wytwarzającego β-d-galaktozydazę Arthrobacter chlorophenolicus i izomerazy arabinozowej Arthrobacter sp.22c. Patent no: PL216,683

    Google Scholar 

  • Wanarska M, Kur J (2005) β-d-Galactosidases – sources, properties and applications. BioTechnologia 4:46–62

    Google Scholar 

  • Wanarska M, Kur J (2012) A method for the production of d-tagatose using a recombinant Pichia pastoris strain secreting β-d-galactosidase from Arthrobacter chlorophenolicus and a recombinant l-arabinose isomerase from Arthrobacter sp. 22c. Microb Cell Fact 11:113

    Google Scholar 

  • Wang K, Li G, Qin Y, Znang CT, Liu YH (2010) A novel metagenome-derived β-galactosidase: gene cloning, overexpression, purification and characterization. Appl Microbiol Biotechnol 88:155–165

    Article  CAS  PubMed  Google Scholar 

  • Wang GX, Gao Y, Hu B, Lu XL, Liu XY, Jiao BH (2013) A novel cold-adapted β-galactosidase isolated from Halomonas sp. S62: gene cloning, purification and enzymatic characterization. World J Microbiol Biotechnol 29:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • White PL, Wynn-Williams DD, Russell NJ (2000) Diversity of thermal responses of lipid composition in the membranes of the dominant culturable members of an Antarctic fellfield soil bacterial community. Antarct Sci 72:386–393

    Google Scholar 

  • Wierzbicka-Woś A, Cieśliński H, Wanarska M, Kozłowska-Tylingo K, Hildebrandt P, Kur J (2011) A novel cold-active β-d-galactosidase from the Paracoccus sp. 32d – gene cloning, purification and characterization. Microb Cell Fact 10:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu K, Tang X, Gai Y, Mehmood M, Xiao X, Wang F (2011) Molecular characterization of cold-inducible beta-galactosidase from Arthrobacter sp. ON14 isolated from Antarctica. J Microbiol Biotechnol 21:236–242

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the National Centre for Research and Development of Poland (PBS1/A9/7/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Kur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cieśliński, H., Wanarska, M., Pawlak-Szukalska, A., Krajewska, E., Wicka, M., Kur, J. (2016). Cold-Active β-Galactosidases: Sources, Biochemical Properties and Their Biotechnological Potential. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_15

Download citation

Publish with us

Policies and ethics