Skip to main content

Alkaliphilic Microorganisms in Biotechnology

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Among extremophilic microorganisms, alkaliphiles are probably the least studied group despite they are diverse and serve as sources of many industrially important products. These organisms are normally found in environments characterized by high pH, but have also been isolated from non-alkaline environments. Alkaliphiles cover a broad range of organisms, some are just alkali-tolerant while others are strict alkaliphiles which grow optimally at or above pH 9 but do not thrive at neutral or acidic conditions. A wide variety of alkaliphiles have been isolated from different natural and man-made alkaline environments. The great majority comes from soda lakes and soda deserts, the most well-known are the lakes in the Great Rift Valley of East Africa and the salt lakes and salt deserts in western USA. These extremophiles use many adaptive mechanisms to survive in ‘extreme’ alkaline environment and some of these mechanisms are of great importance to a range of biotechnological applications. For instance alkaliphiles evolved enzymes that are operationally stable at high pH. Several applications require such enzymes that are active and stable at alkaline conditions. Some alkaliphiles decrease the severity of the high pH of their media by producing substantial amount of organic acids which implies that these organisms can be potentially used to produce organic acids. Organic acids are important inputs in many industrial processes. A number of other valuable novel products such as bioactive compounds, carotenoids and siderophores have also been reported from alkaliphiles, which will expand the application range of these organisms. In addition to their industrial biotechnology importance, alkaliphiles are of interest in environmental biotechnology such as in neutralizing alkaline waste and removing heavy metal contaminants. This chapter deals about the biotechnology of alkaliphiles and focuses on selected industrial applications of alkaline active enzymes, and briefly describes the biotechnological importance of these remarkable extremophiles in the production of carotenoids, siderophores, antibiotics and organic acids. Moreover, it discusses the potential of alkaliphiles in environmental applications with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad S, Santos V, Parajó JC (2001) Totally chlorine-free bleaching of Acetosolv pulps: a clean approach to dissolving pulp manufacture. J Chem Technol Biotechnol 76:1117–1123

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C, Llama M, Serra J (1998) Industrial application of pectic enzymes. Process Biochem 33:21–28

    Article  CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Hilda A, Priya TL, Annadurai G (2005) Purification of keratinase from poultry farm isolate – Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb Technol 36:639–647

    Article  CAS  Google Scholar 

  • Andreaus J, Olekszyszen DN, Silveira MHL (2014) Processing of cellulosic textile materials with cellulases in cellulose and other naturally occurring polymers. In: Fontana JD, Tiboni M, Grzybowski A (eds) Cellulose and other naturally occurring polymers. Research Signpost, Kerala, India, pp 11–19 ISBN: 978-81-308-0543-6

    Google Scholar 

  • Aono R, Horikoshi K (1991) Carotenes produced by alkaliphilic yellow pigmented strains of Bacillus. Agric Biol Chem 55:2643–2645

    CAS  Google Scholar 

  • Aono R, Ito M, Maehida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349

    Article  CAS  Google Scholar 

  • Atanasova N, Kitayska T, Bojadjieva I, Yankov D, Tonkova A (2011) A novel cyclodextrin glucanotransferase from alkaliphilic Bacillus pseudalcaliphilus 20RF: purification and properties. Process Biochem 46:116–122

    Article  CAS  Google Scholar 

  • Aygan A, Karcioglu L, Arikan B (2011) Alkaline thermostable and halophilic endoglucanase from Bacillus licheniformis C108. Afr J Biotechnol 10:789–796

    CAS  Google Scholar 

  • Bai DM, Wei Q, Yan ZH, Zhao XM, Li XG, Xu SM (2003) Fed-batch fermentation of Lactobacillus lactis for hyper-production of l-lactic acid. Biotechnol Lett 25:1833–1835

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P, Bajpai PK (1998) Deinking with enzymes: a review. Tappi J 81:111–117

    CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bakhtiar S, Andersson MM, Gessesse A, Mattiasson B, Hatti-Kaul R (2003) Stability characteristics of a calcium-independent alkaline protease from Nesterenkornia sp. Enzyme Microb Technol 32:525–531

    Article  CAS  Google Scholar 

  • Balakrishnan H, Dutta-Choudhary N, Srinivasan MC, Rele MV (1992) Cellulase-free xylanase production from an alkalophilic Bacillus sp. NCL-87-6-10. World J Microbiol Biotechnol 8:627–631

    Article  CAS  PubMed  Google Scholar 

  • BCC Research: The global market for carotenoids (2011) http://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global- market-fod025d.html.

  • Benz G, Schroder T, Kurz J, Wunsche C, Karl W, Steffens G, Pfitzner J, Schmidt D (1982) Konstitution der desferriform der albomycine d1, d2 and e. Angew Chem 94:552–553 and Suppl 1322–1335.

    Google Scholar 

  • Berry AR, Franco CMM, Zhang W, Middelberg APJ (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol Lett 21:163–167

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Bhavan S, Rao JR, Nair BU (2008) A potential new commercial method for processing leather to reduce environmental impact. Environ Sci Pollut Res Int 15:293–295

    Article  PubMed  Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116

    Article  Google Scholar 

  • Bruhlmann F, Kim KS, Zimmerman W, Fletcher A (1994) Pectinolytic enzymes from Actinomycetes for degumming of ramie bast fibers. Appl Environ Microbiol 60:2107–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burhan A, Nisa U, Gökhan C, Ömer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 38:1397–1403

    Article  CAS  Google Scholar 

  • Cai C-G, Chen J-S, Ql J-J, Yin Y, Zheng X-d (2008) Purification and characterization of keratinase from a new Bacillus subtilis strain. J Zhejiang Univ Sci B 9:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabia BP, Tokiwa Y, Aiba S (2011) Fermentative production of l-(+)-lactic acid by an alkaliphilic marine microorganism. Biotechnol Lett 33:1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microbiol Technol 14:1013–1016

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Morgado J, Almeida L, Kilburn D (1998) Indigo backstaining during cellulase washing. Text Res J 68:398–401

    Article  CAS  Google Scholar 

  • Chang P, Tsai WS, Tsai CL, Tseng MJ (2004) Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem Biophys Res Commun 319:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671

    CAS  Google Scholar 

  • Chua AC, Ingram HA, Raymond KN, Baker E (2003) Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells. Eur J Biochem 270:1689–1698

    Article  CAS  PubMed  Google Scholar 

  • Costa SA, Tzanov T, Carneiro F, Gübitz GM, Cavaco-Paulo A (2002) Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnol Lett 24:173–176

    Article  CAS  Google Scholar 

  • Crini G (2014) A history of cyclodextrins. Chem Rev 114:10940–10975

    Article  CAS  PubMed  Google Scholar 

  • Danesh A, Mamo G, Mattiasson B (2011) Production of haloduracin by Bacillus halodurans using solid-state fermentation. Biotechnol Lett 33:1339–1344

    Article  CAS  PubMed  Google Scholar 

  • de Souza FR, Gutterres M (2012) Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Braz J Chem Eng 29:473–481

    Article  Google Scholar 

  • Delgado O, Quillaguamán J, Bakhtiar S, Mattiasson B, Gessesse A, Hatti-Kaul R (2006) Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol 56:1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Dietera A, Hamm A, Fiedler HP, Goodfellow M, Muller WE, Brun R, Bringmann G (2003) Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced by a novel alkaliphilic Streptomyces strain. J Antibiot 56:639–646

    Article  PubMed  Google Scholar 

  • Ding S, Tan T (2006) l-Lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41:1451–1454

    Article  CAS  Google Scholar 

  • Ding ZG, Li MG, Zhao JY, Ren J, Huang R, Xie MJ, Cui XL, Zhu HJ, Wen ML (2010) Naphthospironone a: an unprecedented and highly functionalized polycyclic metabolite from an alkaline mine waste extremophile. Chemistry 16:3902–3905

    Article  CAS  PubMed  Google Scholar 

  • Doble DMJ, Melchior M, OSullivan B, Siering C, Xu J, Pierre VC, Raymond KN (2003) Toward optimized high-relaxivity MRI agents: the effect of ligand basicity on the thermodynamic stability of hexadentate hydroxypyridonate/catecholate gadolinium(III) complexes. Inorg Chem 42:4930–4937

    Article  CAS  PubMed  Google Scholar 

  • Duarte MC, Pellegrino AC, Portugal EP, Ponezi AN, Franco TT (2000) Characterization of alkaline xylanases from Bacillus pumilus. Braz J Microbiol 31:90–94

    Article  CAS  Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Lett 19:181–191

    Article  CAS  Google Scholar 

  • Fruhwirth GO, Paar A, Gudelj M, Cavaco-Paulo A, Robra K-H, Gübitz GM (2002) An immobilized catalase peroxidase from the alkalothermophile Bacillus SF for the treatment of textile-bleaching effluents. Appl Microbiol Biotechnol 60:313–319

    Article  CAS  PubMed  Google Scholar 

  • Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes – past, present and future. Environ Technol 31:845–856

    Article  CAS  PubMed  Google Scholar 

  • Garnova ES, Krasilnikova EN (2003) Carbohydrate metabolism of the saccharolytic alkaliphilic anaerobes Halonatronum saccharophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Mikrobiologiia 72:558–563

    CAS  Google Scholar 

  • Gascoyne DJ, Connor JA, Bull AT (1991) Capacity of siderophore – producing alkalophilic bacteria to accumulate iron, gallium and aluminium. Appl Microbiol Biotechnol 36:136–141

    Article  Google Scholar 

  • Genckal H, Tari C (2006) Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Technol 39:703–710

    Article  CAS  Google Scholar 

  • Gessesse A, Mamo G (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp AR-135. J Ind Microbiol Biotechnol 20:210–214

    Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb Technol 32:519–524

    Article  CAS  Google Scholar 

  • Glaring MA, Vester JK, Lylloff1 JE, Al-Soud WA, Sørensen SJ, Stougaard P (2015) Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS One. doi:10.1371/journal.pone.0124863

    Google Scholar 

  • Godinho A, Bhosle S (2008) Carotenes produced by alkaliphilic orange-pigmented strain of Microbacterium arborescens—AGSB isolated from coastal sand dunes. Indian J Mar Sci 37:207–312

    Google Scholar 

  • Grant WD, Sorokin DY (2011) Distribution and diversity of soda lake alkaliphiles In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 28–54

    Google Scholar 

  • Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 25–54

    Google Scholar 

  • Gubitz GM, Mansfield SD, Bo¨hm D, Saddler JN (1998) Effect of endoglucanases and hemicellulases in magnetic and flotation deinking of xerographic and laser-printed papers. J Biotechnol 65:209–215

    Article  CAS  Google Scholar 

  • Gudelj M, Fruiwirth GO, Paar A, Lottspeich F, Robra K-H, Cavaco-Paulo A, Gübitz GM (2001) A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5:423–429

    Article  CAS  PubMed  Google Scholar 

  • Gysin J, Crenn Y, Pereira da Silva L, Breton C (1991) Siderophores as anti parasitic agents. US Patent 5:192–807

    Google Scholar 

  • Haarhoff J, Moes CJ, Cerff C, Wyk WJV, Gerischer G, Janse BJH (1999) Characterization and biobleaching effect of hemicellulases produced by thermophilic fungi. Biotechnol Lett 21:415–420

    CAS  Google Scholar 

  • Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ito S (2001) Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 67:1744–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haile G, Gessesse A (2012) Properties of alkaline protease C45 Produced by alkaliphilic Bacillus sp. isolated from Chitu, Ethiopian Soda Lake. J Biotechnol Biomater 2:136

    Google Scholar 

  • Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1:151–156

    Article  CAS  PubMed  Google Scholar 

  • Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, Ito S (2002) Enzymatic properties, crystallization and deduced aminoacid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim Biophys Acta 1570:174–180

    Article  CAS  PubMed  Google Scholar 

  • Hashim SO, Delgado O, Hatti-Kaul R, Mulaa FJ, Mattiasson B (2004) Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnol Lett 26:823–828

    Article  CAS  PubMed  Google Scholar 

  • Hashim SO, Delgado OD, Martínez MA, Kaul RH, Mulaa FJ, Mattiasson B (2005) Alkaline active maltohexaose-forming α-amylase from Bacillus halodurans LBK 34. Enzyme Microb Technol 36:139–146

    Article  CAS  Google Scholar 

  • Hayashi K, Youichi N, Ohara N, Uichimura T, Suzuki H, Komagata K, Kozaki M (1996) Low-temperature-active cellulase produced by Acremonium alcalophilum JCM 7366. J Ferment Bioeng 81:185–190

    Google Scholar 

  • Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54:41–55

    Google Scholar 

  • Henriksson G, Akin DE, Hanlin RT, Rodriguez C, Archibald DD, Rigsby LL, Eriksson KEL (1997) Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe. Appl Environ Microbiol 63:3950–3956

    Google Scholar 

  • Honda H, Kudo T, Ikura Y, Horikoshi K (1985) Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can J Microbiol 31:538–542

    Article  CAS  Google Scholar 

  • Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha, Tokyo, VCH, Weinheim, New York

    Google Scholar 

  • Horikoshi K (1999) Alkaliphilies: some applications of their products for biotechnology. Microbiol. Molecul Biol Rev 63:735–750

    CAS  Google Scholar 

  • Horikoshi K (2006) Alkaliphiles: genetic properties and applications of enzymes. Springer, Berlin

    Google Scholar 

  • Horikoshi K (2011) Enzymes isolated from alkaliphiles. In: Extremophiles handbook. Springer, Japan, pp 164–177

    Google Scholar 

  • Horikoshi K, Atsukawa Y (1973) Xylanase produced by alkalophilic Bacillus no C-59-2. Agric Biol Chem 37:2097–2103

    Article  CAS  Google Scholar 

  • Horikoshi K, Nakao M, Kurono Y, Saschihara N (1984) Cellulases of an alkalophilic Bacillus strain isolated from soil. Can J Microbiol 30:774–779

    Article  CAS  Google Scholar 

  • Ibarra D, Monte MC, Blanco A, Martinez AT, Martinez MJ (2012) Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. J Ind Microbiol Biotechnol 39:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Kodama K, Yasuda H, Okamoto-Kainuma A, Koizumi K, Yamasato K (2007) Presence of halophilic and alkaliphilic lactic acid bacteria in various cheese. Lett Appl Microbiol 44:308–313

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Tanasupawat S, Nakajima K, Kanamori H, Ishizaki S, Kodama K, Okamoto-Kainuma A, Koizumi Y, Yamamoto Y, Yamasato K (2009) Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. Int J Syst Evol Microbiol 59:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Yamasato K, Kodama K, Yasuda H, Matsuyama M, Okamoto-Kainuma A, Koizumi Y (2013) Alkalibacterium gilvum sp. nov., slightly halophilic and alkaliphilic lactic acid bacterium isolated from soft and semi-hard cheeses. Int J Syst Evol Microbiol 63:1471–1478

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Shdcata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989a) Cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281

    CAS  Google Scholar 

  • Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989b) Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281

    CAS  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Xue Y, Wang A, Wang L, Zhang G, Zeng Q, Yu B, Ma Y (2013) Efficient production of polymer-grade l-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresour Technol 143:665–668

    Article  CAS  PubMed  Google Scholar 

  • Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1999) Microbial Diversity of soda lakes. Extremophiles 2:191–200

    Google Scholar 

  • Jyonouchi H, Sun S, Gross M (1995) Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: Astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr Cancer 23:171–183

    Article  CAS  PubMed  Google Scholar 

  • Kagawa M, Murakoshi N, Nishikawa Y, Matsumoto G, Kurata Y, Mizobata T, Kawata Y, Nagai J (1999) Purification and cloning of a thermostable manganese catalase from thermophilic bacterium. Arch Biochem Biophys 362:346–355

    Article  CAS  PubMed  Google Scholar 

  • Kamini NR, Hemachander C, Mala JGS, Puvanakrishnan R (1999) Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci 77:80–86

    CAS  Google Scholar 

  • Kang MK, Rhe YH (1995) Carboxymethyl cellulases active and stable at alkaline pH from alkalophilic Cephalosporium sp. Rym-202. Biotechnol Lett 17:507–512

    Article  CAS  Google Scholar 

  • Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibers. Process Biochem 36:803–807

    Article  CAS  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53

    Article  CAS  Google Scholar 

  • Kenealy WR, TW Jeffries (2003) Enzyme processes for pulp and paper: a review of recent developments. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. Oxford University Press, Oxford, pp 210–239

    Google Scholar 

  • Kim JY, Hur SH, Hong JH (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol Lett 27:313–316

    Article  CAS  PubMed  Google Scholar 

  • Kitada M, Hashimoto M, Kudo T, Horikoshi K (1994) Properties of two different Na+/H+ antiport systems in alkaliphilic Bacillus sp. strain C-125. J Bacteriol 176:6464–6469

    Google Scholar 

  • Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Ito M, Guffani AA (2001a) The Na-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1501:158–168

    Article  Google Scholar 

  • Krulwich TA, Ito M, Guffanti AA (2001b) The Na+-dependency of alkaliphiliy in Bacillus. Biochem Biophys Acta 1505:158–168

    CAS  PubMed  Google Scholar 

  • Krulwieh TA, Ito M, Gilmour R, Guffanti AA (1997) Mechanisms of cytoplasmic pH regulation in alkaliphilic strains of Bacillus. Extremophiles 1:163–169

    Article  Google Scholar 

  • Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha NM, Kumar A, Bisht G, Pasha S and Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101 doi:10.1100/2012/345101

    Google Scholar 

  • Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharma 453:167–180

    Article  CAS  Google Scholar 

  • Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–71

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Darah I, Ibrahim CO (2007) Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency. Bioresour Technol 98:1684–1689

    Article  CAS  PubMed  Google Scholar 

  • Lin LL, Chyau CC, Hsu WH (1998) Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol Appl Biochem 28:61–68

    CAS  PubMed  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo- β-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb Technol 39:1492–1498

    Article  CAS  Google Scholar 

  • Martins RF, Hatti-Kaul R (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterization. Enzyme Microb Technol 30:116–124

    Article  CAS  Google Scholar 

  • Martins RF, Davids W, Abu Al-Soud W, Levander F, Rådström P, Hatti-Kaul R (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144

    Article  CAS  PubMed  Google Scholar 

  • Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    Google Scholar 

  • Matzuzawa M, Kawano M, Nakamura N and Horikoshi K (1975) An improved method for the preparation of Schardinger-Dextrin on an industrial scale by cyclodextrin glycosyl transferase of an alkalophilic Bacillus sp. (ATCC 21783). Starch–Stärke 27:410–413

    Google Scholar 

  • McMillan DGG, Velasquez I, Nunn BL, Goodlett DR, Hunter KA, Lamont I, Sander SG, Cook GM (2010) Acquisition of iron by alkaliphilic Bacillus species. Appl Environ Microbiol 76:6955–6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Xue Y, Yu B, Gao C, Ma Y (2012) Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour Technol 116:334–339

    Article  CAS  PubMed  Google Scholar 

  • Michaud-Soret I, Jacquamet L, Debaecker-Petit N, Le Pape L, Barynin VV, Latour J-M (1998) The existence of two oxidized Mn(III) forms from Thermus thermophilus manganese catalase. Inorg Chem 37:3874–3876

    Article  CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol. Mol Biol Rev 71:413–451

    Article  CAS  Google Scholar 

  • Miyashita K (2009) Function of marine carotenoids. Forum Nutr 61:136–146

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Hoshino E, Yokosuka M, Suzuki A (1991) New detergent mechanism with use of novel alkaline cellulose. J Am Oil Chem Soc 68:553–558

    Article  CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P (1999) Decolorization and detoxification of extraction-stage effluent from chlorine bleaching of Kraft pulp by Rhizopus oryzae. Appl Environ Microbiol 65:1078–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 59:2311–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Nakai R, Wajabatacgu K, Ishiguro Y, Aono R, Horikoshi K (1994) Thermophilic alkaline xylanase from newly isolated alkaliphilic and thermophilic Bacillus sp. strain TAR-1. Biosci Biotechnol Biochem 58:78–81

    Article  CAS  PubMed  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Mircrobiol Biotechnol 51:711–729

    Article  CAS  Google Scholar 

  • Nilegaonkar SS, Zambare VP, Kanekar PP, Dharephalkar PK, Sarnaik SS (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour Technol 98:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Ningthoujam DS, Kshetri P, Sanasam S, Nimaichand S (2009) Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World Appl Sci J 7:907–916

    CAS  Google Scholar 

  • Nonaka T, Fujihashi M, Kita A, Hagihara H, Ozaki K, Ito S, Miki K (2003) Crystal structure of calcium-free alpha-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J Biol Chem 278:24818–24824

    Article  CAS  PubMed  Google Scholar 

  • Olivera N, Sequeiros C, Sineriz F, Breccia J (2006) Characterization of alkaline proteases from novel alkali-tolerant bacterium Bacillus patagoniensis. World J Microbiol Biotechnol 22:737–743

    Article  CAS  Google Scholar 

  • Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfactants Deterg 1:555–566

    Article  CAS  Google Scholar 

  • Oluoch KR, Welander U, Andersson MM, Mulaa FJ, Mattiasson B, Hatti-Kaul R (2006) Hydrogen peroxide degradation by immobilized cells of alkaliphilic Bacillus halodurans. Biocat Biotransfor 24:215–222

    Article  CAS  Google Scholar 

  • Osanjo GO, Muthike EW, Tsuma L, Okoth MW, Bulimo WD, Lünsdorf H, Abraham WR, Dion M, Timmis KN, Golyshin PN, Mulaa FJ (2009) A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr J Microbiol Res 3:426–433

    CAS  Google Scholar 

  • Paar A, Costa S, Tzanov T, Gudelj M, Robra K-H, Cavaco-Paulo A, Gübitz GM (2001) Thermo-alkali-stable catalases from newly isolated Bacillus sp. for treatment and recycling of textile bleaching effluents. J Biotechnol 89:147–153

    Article  CAS  PubMed  Google Scholar 

  • Paavilainen S, Helistö P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78:217–222

    Article  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC, Picci N (2009) Growth-inhibitory effects of the astaxanthin- rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117

    Article  CAS  PubMed  Google Scholar 

  • Pietrangelo A (2002) Mechanism of iron toxicity. In: Hershko C (ed) Iron chelation theraphy, vol. 509. Kluwer Academic/Plenum Publishers, New York, pp 19–43

    Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater-a review. Sci Total Environ 333:37–58

    Article  CAS  PubMed  Google Scholar 

  • Rai SK, Roy JK, Mukherjee AK (2010) Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Rao CS, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44:262–268

    Article  CAS  Google Scholar 

  • Roadcap GS, Sanford RA, Jin Q, Pardinas JR, Bethke CM (2006) Extremely alkaline (pH>12) ground water hosts diverse microbial community. Groundwater 44:511–517

    Article  CAS  Google Scholar 

  • Ruggiero CE, Neu MP, Matonic JH, Reilly SD (2000) Interactions of Pu with desferrioxamine siderophores can affect bioavailability and mobility. Actinide Res Q 2000:16–18

    Google Scholar 

  • Said S, Fonseca MJV, Siessere V (1991) Pectinase production by Penicillium frequentans. World J Microbiol Biotechnol 7:607–608

    Article  CAS  PubMed  Google Scholar 

  • Sashihara N, Kudo T, Horikoshi K (1984) Molecular cloning and expression of cellulase genes of alkalophilic Bacillus sp. strain N-4 in Escherichia coli. J Bacteriol 158:503–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Beppu T, Arima K (1980) Properties and structure of a novel peptide antibiotic no. 1970. Agric Biol Chem 44:3037–3040

    CAS  Google Scholar 

  • Saxena RK, Dutt K, Agarwal L, Nayyar P (2007) A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresour Technol 98:260–265

    Article  CAS  PubMed  Google Scholar 

  • Seifzadeh S, Sajedi RH, Sariri R (2008) Isolation and characterization of thermophilic alkaline proteases resistant to sodium dodecyl sulfate and ethylene diamine tetraacetic acid from Bacillus sp. GUS1. Iranian J Biotechnol 6:214–221

    CAS  Google Scholar 

  • Senthilvelan T, Kanagaraj J, Mandal AB (2012) Application of enzymes for dehairing of skins: cleaner leather processing. Clean Technol Envir 14:889–897

    Article  CAS  Google Scholar 

  • Shrinath A, Szewczak JT, Bowen IJ (1991) A review of ink removal techniques in current deinking technology. Tappi J 74:85–93

    CAS  Google Scholar 

  • Shrinivas D, Naik GR (2011) Characterization of alkaline thermostable keratinolytic protease from thermoallkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterior Biodegrad 65:29–35

    Article  CAS  Google Scholar 

  • Singh SA, Plattner H, Diekmann H (1999) Exopolygalacturonate lyase from a thermophilic Bacillus sp. Enzyme Microb Technol 25:420–425

    Article  CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K. International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  • Singh LS, Mazumder S, Bora TC (2009) Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. J Mycol Med 19:225–233

    Article  Google Scholar 

  • Soerensen NH, Hoff T, Oestergaard PR, Cassland P (2011) Enzyme dehairing of skins and hides. WO 2011161135 A1

    Google Scholar 

  • Sorokin DY, Turova TP, Kuznetsov BB, Briantseva IA, Gorlenko VM (2000) Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a- containing bacterium isolated from a soda lake. Mikrobiologia 69:89–97

    Google Scholar 

  • Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Banciu HL, Muyzer G (2015) Functional microbiology of soda lakes. Curr Opin Microbiol 25:88–96

    Article  CAS  PubMed  Google Scholar 

  • Spiro MC, Griffith WP (1997) The mechanism of hydrogen peroxide bleaching. Text Chem Color 29:12–13

    CAS  Google Scholar 

  • Srinivasan MC, Rele MV (1999) Microbial xylanases for paper industry. Curr Sci 77:137–142

    CAS  Google Scholar 

  • Sturr MG, Guffanti AA, Krulwieh TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases – production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Tech 15:137–142

    Article  CAS  Google Scholar 

  • Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100

    CAS  PubMed  Google Scholar 

  • Taksawan T, Yuichi H, Saori K, Moriya O, Savitr T, Napavarn N, Toshiaki K (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238

    Article  Google Scholar 

  • Tatineni R, Doddapaneni KK, Potumarthi RC, Vellanki RN, Kandathil MT, Kolli N, Mangamoori LN (2008) Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresour Technol 99:1596–1602

    Article  CAS  PubMed  Google Scholar 

  • Thakur IS (2006) Industrial biotechnology: problems and remedies. I.K. International, New Delhi, p 36

    Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22:181–188

    Article  CAS  PubMed  Google Scholar 

  • Thomas WJ (1994) Comparison of enzyme-enhanced with conventional deinking of xerographic and laser-printed paper. Tappi J 77:173–179

    Google Scholar 

  • Thompson VS, Schaller KD, Apel WA (2003) Purification and characterization of a novel thermo-alkali stable catalase from Thermus brokianus. Biotechnol Prog 19:1292–1299

    Article  CAS  PubMed  Google Scholar 

  • Thumar JT, Dhulia K, Singh SP (2010) Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol 26:2081–2087

    Article  CAS  Google Scholar 

  • Tsujibo H, Sato T, Inui M, Yamamoto H, Inamori Y (1988) Intracellular accumulation of phenazine antibiotics production by an alkalophilic actinomycete. Agric Biol Chem 52:301–306

    CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzanov T, Costa S, Gübitz GM, Cavaco-Paulo A (2001) Dyeing in catalase treated bleaching baths. Color Technol 117:1–5

    Article  CAS  Google Scholar 

  • Vasavada SH, Thumar JT, Singh SP (2006) Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci 91:1393–1397

    CAS  Google Scholar 

  • Vértesy L, Aretz W, Fehlhaber HW, Kogler H (1995) Salimycin A-D, antibiotoka aus Streptomyces violaveus, DSM 8286, mit siderophor-aminoglycosid-struktur. Helv Chim Acta 78:46–60

    Article  Google Scholar 

  • Vicuna R, Escobar F, Osses M, Jara A (1997) Bleaching of Eucalyptus Kraft pulp with commercial xylanases. Biotechnol Lett 19:575–578

    Article  CAS  Google Scholar 

  • Von Gunten HR, Benes P (1995) Speciation of radionuclides in the environment. Radiochim Acta 69:1–29

    Article  Google Scholar 

  • Vyas S, Lachke A (2003) Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzyme Microb Technol 32:236–245

    Article  CAS  Google Scholar 

  • Weck M (1991) Hydrogen peroxide – an environmentally safe textile bleaching agent. Text Prax Int 46:144–147

    CAS  Google Scholar 

  • Wielen LCV, Panek JC, Pfromm PH (1999) Fracture of toner due to paper swelling. Tappi J 82:115–121

    Google Scholar 

  • Ximenes FA, Sousa MV, Puls J, Silva FG, Filho EXF (1999) Purification and characterization of a low-molecular-weight xylanase produced by Acrophialophora nainiana. Curr Microbiol 38:18–21

    Article  CAS  PubMed  Google Scholar 

  • Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure l-(+)-lactic acid. J Gen Appl Microbiol 60:270–275

    Article  CAS  PubMed  Google Scholar 

  • Zhilina TA, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the Swedish Research Council via a regular research grant and a Research link grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gashaw Mamo or Bo Mattiasson .

Editor information

Editors and Affiliations

Ethics declarations

Gashaw Mamo and Bo Mattiasson declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mamo, G., Mattiasson, B. (2016). Alkaliphilic Microorganisms in Biotechnology. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_8

Download citation

Publish with us

Policies and ethics