Skip to main content

Tools for the Study of Nanostructures

  • Chapter
  • First Online:
Food Nanoscience and Nanotechnology

Abstract

In this chapter, some of the most used microscopy techniques for analyzing the structure of biological materials at the micro- and nanoscale will be presented. These techniques are usually applied looking for the changes that promote the arise of new properties and phenomena that emerge at these scales, hence, the purpose of this chapter is to provide the reader with examples of the application of different types of microscopy techniques usually used to characterize food items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Davidson MW. (2007) Introduction to microscopy. In: Molecular expressions. Florida State University. http://micro.magnet.fsu.edu/primer/anatomy/introduction.html Accesed. 22 Aug 2014

  • Acevedo NC, Briones V, Buera MP, Aguilera JM (2008) Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs. J Food Eng 85:222–231

    Article  CAS  Google Scholar 

  • Achir N, Vitrac O, Trystram G (2010) Direct observation of the surface structure of French fries by UV-VIS confocal laser scanning microscopy. Food Res Int 43:307–314

    Article  CAS  Google Scholar 

  • Aguilera JM (2000) Microstructure and food product engineering. Food Technol 54(11):56–64

    Google Scholar 

  • Aguilera JM (2005) Why food microstructure? J Food Eng 67:3–11

    Article  Google Scholar 

  • Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering, 2nd edn. Springer, New York

    Google Scholar 

  • Aguilera JM, Chiralt A, Fito P (2003) Food dehydration and product structure. Trends Food Sci Technol 14:432–437

    Article  CAS  Google Scholar 

  • Akalin AS, Karaman AD (2010) Innfluence of packaging conditions on the textural and sensory characteristics, microstructure and color of industrially produced turkish white cheese during ripenning. J Texture Stud 41:549–562

    Article  Google Scholar 

  • Allenstein U, Ma Y, Arabi-Hashemi A, Zink M, Mayr SG (2012) Fe-Pd bases ferromagnetic shape memory actuators for medical applications: Biocompatibility, effect of surface roughness and protein coatings. Acta Biomater 9(3):5845–5853

    Article  Google Scholar 

  • Amos WB, White JG (2003) How the confocal laser scanning microscope entered biological research. Biol Cell 95:335–342

    Article  CAS  Google Scholar 

  • Arltoft D, Madsen F, Ipsen R (2007) Screening of probes for specific localization of polysaccharides. Food Hydrocoll 21:1062–1071

    Article  CAS  Google Scholar 

  • Arzate-Vázquez I, Chanona-Pérez JJ, Calderón-Domínguez G, Terres-Rojas E, Garibay-Febles V, Martínez-Rivas A, Gutiérrez-López GF (2012) Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydr Polym 87(1):289–299

    Article  Google Scholar 

  • Bai XC, Fernandez IS, McMullan G, Scheres SHW (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2:e00461

    Article  Google Scholar 

  • Baker AA, Miles MJ, Helbert W (2001) Internal structure of the starch granule revealed by AFM. Carbohydr Res 330(2):249–256

    Article  CAS  Google Scholar 

  • Baldwin PM, Adler J, Davies MC, Melia CD (1998) High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci 27(3):255–265.

    Article  Google Scholar 

  • Basu S, Shivhare US (2010) Rheological, textural, micro-structural and sensory properties of mango jam. J Food Eng 100(2):357–365

    Article  CAS  Google Scholar 

  • Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12:505–514

    Article  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–934

    Article  Google Scholar 

  • Bordoloi A, Kaur L, Singh J (2012) Parenchyma cell microstructure and tectural characteristics of raw and cooked potatoes. Food Chem 133:1092–1100

    Article  CAS  Google Scholar 

  • Brewer J, Bernardino de la Serna J, Wagner K, Bagatolli LA (2010) Multiphoton excitation fluorescence microscopy in planar membrane systems. Biochim Biophys Acta 1798:1301–1308

    Article  CAS  Google Scholar 

  • Bykov VA, Novikov YA, Rakov AV, Shikin SM (2003) Defining the parameters of a cantilever tip AFM by reference structure. Ultramicroscopy 96(2):175–180

    Article  CAS  Google Scholar 

  • Calero N, Muñoz J, Cox PW, Heuer A, Guerrero A (2013) Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oil and potato protein. Food Hydrocoll 30:152–162

    Article  CAS  Google Scholar 

  • Carvalho CWP, Takeiti CY, Onwulata CI, Pordesimo LO (2010) Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. J Food Eng 98:103–109

    Article  CAS  Google Scholar 

  • Chassagne-Berces, S, Poirier C, Devaux M-F, Fonseca F, Lahaye M, Pigorini G, Girault C, Marin M, Guillon F (2009) Changes in texture, cellular structure and cell wall composition in apple tissue as a result of freezing. Food Res Int 42:788–797

    Article  CAS  Google Scholar 

  • Chen L, Feng FX, Lu F, Xu LX, Zhou HG, Li YQ, Guo YX (2011) Effects of camptothecin, etoposide and Ca2 + on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing. Meat Sci 8(3):165–174

    Article  Google Scholar 

  • Coote PJ, Billon CMP, Pennell S, McClure PJ, Ferdinando DP, Cole MB (1995) The use of confocal scanning laser microscopy CLSM to study the germination of individual spores of Bacillus cereus. J Microbiol Methods 21:193–208

    Article  Google Scholar 

  • Cox G (2002) Biological confocal microscopy. Mater Today (Kidlington) 53:34–41

    Article  Google Scholar 

  • Dunlap M, Adaskaveg JE (1997) Introduction to the scanning electron microscope: theory, practice and procedures. Facility for Advanced Instrumentation. University of California, Davis

    Google Scholar 

  • Dürrenberger MB, Handschin S, Conde-Petit B, Escher F (2001) Visualization of food structure by confocal laser scanning microscopy CLSM. Lebenson Wiss Technol 34:11–17

    Article  Google Scholar 

  • Emmambux MN, Stading M (2007) In situ tensile deformation of zein films with plasticizers and filler materials. Food Hydrocoll 21:1245–1255

    Article  Google Scholar 

  • Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular interactions with the atomic force microscope. Adv Biosens Bioelectron 10(9–10):895–901

    Article  CAS  Google Scholar 

  • Fu L, Zhang K, Li S, Wang Y, Huang TS, Zhang A, Cheng ZY (2010) In situ real-time detection of E. coli in water using antibody-coated magnetostrictive microcantilever. Sens Actuators B Chem 150(1):220–225

    Article  CAS  Google Scholar 

  • García-Segovia P, Mognetti C, Andrés-Bello A, Martínez-Monzó J (2010) Osmotic dehydration of Aloe vera (Aloe barbadensis Miller). J Food Eng 97(2):154–160

    Article  Google Scholar 

  • Ghosh A, Ali MA, Dias GJ (2009) Effect of cross-linking on microstructure and physical performance of casein protein. Biomacromolecules 10:1681–1688

    Article  CAS  Google Scholar 

  • Gunning AP, Kirby AR, Parker ML, Cross KL, Morris VJ (2010) Utilizing atomic force microscopy in food research. Food Technol 64:32–37

    Google Scholar 

  • Haider M, Müller H, Uhlemann S, Zach J, Loebau U, Hoeschen R (2008) Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108:167–178

    Article  CAS  Google Scholar 

  • Haugstad G, Wladfelter WL, Weberg EB, Weberg RT, Teatherill TD (1994) Probing biopolymer films with scanning force methods. MRS Proc 355: 253. doi:10.1557/PROC-355-253

    Article  Google Scholar 

  • Hongshun Y, Yifen W, Shaojuan L, Hongjie A, Yunfei L, Fusheng C (2007) Application of atomic force microscopy as a nanotechnology tool in food science. J Food Sci 72 (4): R65–R75

    Article  Google Scholar 

  • Huang B (2010) Super-resolution optical microscopy: multiple choices. Curr Opin Chem Biol 14: 10–14

    Article  CAS  Google Scholar 

  • Janovjak H, Müller DJ, Humphris ADL (2005) Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins. Biophys J 88(2):1423–1431

    Article  CAS  Google Scholar 

  • Jekle M, Becker T (2011) Implementation of a novel tool to quantify dough microstructure. Procedia Food Sci 1: 1–6

    Article  Google Scholar 

  • Kasas S, Thomson NH, Smith BL, Hansma PK, Miklossy J, Hansma HG (1997) Biological applications of the AFM: from single molecules to organs. Int J Imaging Syst Technol 8(2):151–161

    Article  Google Scholar 

  • Kim S, Blainey PC, Schroeder CM, Xie XS (2007) Multiplexed single molecule assay for enzymatic activity on flow-stretched DNA. Nat Methods 4(5):397–399.

    CAS  Google Scholar 

  • Koinkar VN, Bhushan B (1996) Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J Vac Sci Technol A 14(4):2378–2391

    Article  CAS  Google Scholar 

  • Köning K, Schenke-Layland K, Riemann I, Stock UA (2005) Multiphoton autofluorescence imaging of intratissue elastic fibers. Biomaterials 26:495–500

    Article  Google Scholar 

  • Krzeminski A, GroBhable K, Hinrichs J (2011) Structural properties of stirred yoghurt as influenced by whey proteins. Lebenson Wiss Technol 44:2134–2140

    Article  CAS  Google Scholar 

  • Li ZH, Wang XQ, Wang M, Wang FF, Ge HL (2006) Preparation and tribological properties of the carbon nanotubes-Ni-P composite coating. Tribol Int 39(9):953–957

    Article  CAS  Google Scholar 

  • Li J, Casell A, Dai H (2007) Carbon nanotube tips for MAC mode AFM measurements in liquids application note. Available via Agilent Technologies. http://cp.literature.agilent.com/litweb/pdf/5989-6376EN.pdf. Accessed 04 Sept 2014

  • Lin S, Chen JL, Lin HW (2005) Measurements of the forces in protein interactions with atomic force microscopy. Curr Proteomics 2:55–81

    Article  CAS  Google Scholar 

  • Lu G, Zangari G (2006) Electrodeposition of platinum nanoparticles on highly oriented pyrolitic graphite. Part II. Morphological characterization by atomic force microscopy. Electrochim Acta 51(12):2531–2538

    Article  CAS  Google Scholar 

  • Mackie AR, Gunning AP, Wilde PJ, Morris VJ (1999) Orogenic displacement of protein from the air/water interface by competitive adsorption, J Colloid Interface Sci 210(1):157–166

    Article  CAS  Google Scholar 

  • Mosele MM, Hansen AS, Hansen M, Schulz A, Martens HJ (2011) Proximate composition, histochemical analysis and microstructural localization of nutrients in immature and mature seeds of marama bean Tylosema esculentum—an underutilized food legume. Food Chem 127:1556–1561

    Article  Google Scholar 

  • Neethirajan S, Thomson DJ, Jayas DS, White NDG (2008) Characterization of the surface morphology of durum wheat starch granules using atomic force microscopy. Microsc Res Tech 71(2):125–132

    Article  CAS  Google Scholar 

  • Nunes C, Santos C, Pinto G, Lopes-da-Silva JA, Saraiva JA, Coimbra MA (2008) Effect of candying on microstructure and texture of plums (Prunus domestica L.). Lebenson Wiss Technol 41(10):1776–1783

    Article  CAS  Google Scholar 

  • Orloff J (2009) Handbook of charged particle optics. CRC Press, Rockaway Beach

    Google Scholar 

  • Paddock SW (2000) Principles and practices of laser scanning confocal microscopy. Molec Biotechnol 16(2):127–149

    Article  CAS  Google Scholar 

  • Perea FMJ, Chanona PJJ, Terrés RE, Calderón DG, Garibay FV, Alamilla BL, Gutiérrez LGF (2010) Microstructure characterization of milk powders and their relationship with rehydration properties. In: Woo MW, Daud WRW, Mujumdar AS (eds) Spray drying technology. TPR Group, Singapore, pp 197–218

    Google Scholar 

  • Pérez-Millan MI, Becu-Villalobos D (2009) La proteína verde fluorescente ilumina la biociencia. Medicina 69:370–374

    Google Scholar 

  • Perucho-Lozano, CJ (2011) Optimización de imágenes de muestras biológicas obtenidas por fluorescencia. M Sc dissertation, Universidad Industrial de Santander, Colombia

    Google Scholar 

  • Prasad VP, Semwogerere D, Weeks ER (2007) Confocal microscopy of colloids. J Phys Condens Matter 19:1–25

    Article  Google Scholar 

  • Pygall SR, Whetstone J, Timmins P, Melia CD (2007) Pharmaceutical applications of confocal laser scanning microscopy: the physical characterization of pharmaceutical systems. Adv Drug Deliv Rev 59:1434–1452

    Article  CAS  Google Scholar 

  • Raschke K, Shabahang M, Wolf R (2003) The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217:639–650

    Article  CAS  Google Scholar 

  • Rewthong O, Soponronnarit S, Taechapairoj C, Tungtrakul P, Prachayawarakorn S (2011) Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J Food Eng 103:258–264

    Article  Google Scholar 

  • Romeih EA, Moe KM, Skeie S (2012) The influence of fat globule membrane material on the microstructure of low-fat Cheddar cheese. Int Dairy J 26: 66–72

    Article  CAS  Google Scholar 

  • Romero de ℑvila MD, Ordóñez JA, De la Hoz L, Herrero AM, Cambero MI (2010) Microbial transglutaminase for cold-set binding of unsalted/salted pork models and restructured dry ham. Meat Sci 84:747–754

    Article  Google Scholar 

  • Ryan GW (2000) Anisotropy of surface roughness on aluminium sheet studied by atomic force microscopy. Microsc Microanal 6(2):137–144

    CAS  Google Scholar 

  • Schaer-Zammaretti P, Ubbink J (2003) Imaging of lactic acid bacteria with AFM—elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97(1–4):199–208

    Article  CAS  Google Scholar 

  • Schirmer M, Höchstötter A, Jekle M, Arendt E, Becker T (2013) Physicochemical and morphological characterization of different starches with variable amylase/amylopectin ratio. Food Hydrocoll 32:52–63

    Article  CAS  Google Scholar 

  • Semwogerere D, Weeks ER (2005) Confocal microscopy. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical enginnering. CRC Press, New York, pp 705–714

    Google Scholar 

  • Silva E, Birkenhake M, Scholten E, Sagis LMC, van der Linden E (2013) Controlling rheology and structure of sweet potato starch noodles with high broccoli poder content by hydrocolloids. Food Hydrocoll 30:42–52

    Article  CAS  Google Scholar 

  • Stadtländer CTKH (2007) Scanning electron microscopy and transmission electron microscopy of mollicutes: challenges and opportunities. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy, Formatex, Badajoz, pp 122–131

    Google Scholar 

  • Straub M, Lodemann P, Holroyd P, Jahn R, Hell SW (2000) Live cell imaging by multifocal multiphoton microscopy. Eur J Cell Biol 79:726–734

    Article  CAS  Google Scholar 

  • Sudam BM, Nichols MF (1994) Surface roughness of plasma polymerized films by AFM. In: Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology, Baltimore, 3–6 Nov 1994

    Google Scholar 

  • Tambe NS, Bhushan B (2005) A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. J Phys D Appl Phys 38(5):764–773

    Article  CAS  Google Scholar 

  • Tortonese M, Barrett RC, Quate CF (1993) Atomic resolution with an atomic force microscope using piezoresistive detection. Appl Phys Lett 62(8):834–836

    Article  CAS  Google Scholar 

  • Totosaus A, Pérez-Chabela ML (2009) Textural properties and microstructure of low-fat and sodium-reduced meat batters formulated with gellan gum and dicationic salts. Lebenson Wiss Technol 42:563–569

    Article  CAS  Google Scholar 

  • Tyutyunnikov D (2010) High resolution transmission electron microscopy investigations of FeP t and Au nanoparticles. Dissertation, University Duisburg-Essen. Germany

    Google Scholar 

  • Ubbink J, Burbidge A, Mezzenga R (2008) Food structure and functionality: a soft matter perspective. Soft Matter 4:1569–1581

    Article  CAS  Google Scholar 

  • Utsunomiya S, Ewing RC. 2003. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive x-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37:786–791

    Article  CAS  Google Scholar 

  • van den Berg L, Jan Klok H, van Vliet T, van der Linden E, van Boekel MAJS, van de Velde F (2008) Quantification of a 3D structural evolution of food composites under large deformations using microrheology. Food Hydrocoll 22:1574–1583

    Article  Google Scholar 

  • van den Berg L, Rosenberg Y, van Boekel MAJS, Rosenberg M, van de Velde F (2009) Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales. Food Hydrocoll 23:1288–1298

    Article  Google Scholar 

  • Venkatesh MK, Ravi R, Keshava BK, Raghavarao KSMS (2008) Studies on roasting of wheat using fluidized bed roaster. J Food Eng 89:336–342

    Article  Google Scholar 

  • Voutou V, Eleni-Chrysanthi S (2013) Electron microscopy: the basics. Physics of advanced materials winter school. Available at http://optiki.files.wordpress.com/2013/03/electron-microscopythe-basics.pdf. Accessed 4 Sept 2014

  • Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microsopy CLSM and Raman microscopy RM: Investigations on EPS—Matrix. Water Res 43:63–76

    Article  CAS  Google Scholar 

  • Walsh H, Ross J, Hendricks G, Guo M (2010) Physico-chemical properties, probiotic survivability, microstructure, and acceptability of a yogurt-like symbiotic oats-based product using pre-polymerized whey protein as a gelation agent. J Food Sci 75:327–337

    Article  Google Scholar 

  • Wang ZL (2003) New developments in transmission electron microscopy for nanotechnology. Adv Mater 15(18):1497–1514

    Article  CAS  Google Scholar 

  • Wang Y, Yang H, Regenstein JM (2008) Characterization of fish gelatin at nanoscale using atomic force microscopy. Food Biophys 3:269–272

    Article  Google Scholar 

  • Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Spinger, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

Escamilla-García, M. et al. (2015). Tools for the Study of Nanostructures. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_2

Download citation

Publish with us

Policies and ethics