Skip to main content

Developmental Immune Activation Models with Relevance to Schizophrenia

  • Chapter
Immunology and Psychiatry

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 8))

Abstract

It is increasingly appreciated that altered neuroimmune mechanisms might play a role in the development of schizophrenia and related psychotic illnesses. On the basis of human epidemiological findings, a number of translational rodent models have been established to explore the consequences of prenatal immune activation on brain and behavioral development. The currently existing models are based on maternal gestational exposure to human influenza virus, the viral mimic polyriboinosinic–polyribocytidilic acid [Poly(I:C)], the bacterial endotoxin lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected inflammatory cytokines. These models are pivotal for establishing causal relationships and for identifying cellular and molecular mechanisms that affect normal brain development in the event of early-life immune exposures. An important aspect of developmental immune activation models is that they allow a multifaceted, longitudinal monitoring of the disease process as it unfolds during the course of neurodevelopment from prenatal to adult stages of life. An important recent refinement of these models is the incorporation of multiple etiologically relevant risk factors by combining prenatal immune challenges with specific genetic manipulations or additional environmental adversities. Converging findings from such recent experimental attempts suggest that prenatal infection can act as a “neurodevelopmental disease primer” that is likely relevant for a number of chronic mental illnesses. Hence, the adverse effects induced by prenatal infection might reflect an early entry into the neuropsychiatric route, but the specificity of subsequent disease or symptoms is likely to be strongly influenced by the genetic and environmental context in which the prenatal infectious process occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, et al. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry. 2010;68:1172–11781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aguilar-Valles A, Luheshi GN. Alterations in cognitive function and behavioral response to amphetamine induced by prenatal inflammation are dependent on the stage of pregnancy. Psychoneuroendocrinology. 2011;36:634–48.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Valles A, Flores C, Luheshi GN. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia. PLoS One. 2010;5:e10967.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aguilar-Valles A, Jung S, Poole S, Flores C, Luheshi GN. Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology. 2012;37:956–69.

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol. 2004;4:499–511.

    Article  CAS  PubMed  Google Scholar 

  • Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry. 2006;11:47–55.

    Article  CAS  PubMed  Google Scholar 

  • Atladóttir HO, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40:1423–30.

    Article  PubMed  Google Scholar 

  • Ayhan Y, Sawa A, Ross CA, Pletnikov MV. Animal models of gene-environment interactions in schizophrenia. Behav Brain Res. 2009;204:274–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry. 2006;163:927–9.

    Article  PubMed  Google Scholar 

  • Baharnoori M, Bhardwaj SK, Srivastava LK. Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: a prenatal infection model for developmental neuropsychiatric disorders. Schizophr Bull. 2012;38:444–56.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68:314–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93:23–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167:261–80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown AS, Cohen P, Harkavy-Friedman J, Babulas V, Malaspina D, Gorman JM, Susser ES. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry. 2001;49:473–86.

    Article  CAS  PubMed  Google Scholar 

  • Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004a;61:774–80.

    Article  PubMed  Google Scholar 

  • Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004b;161:889–95.

    Article  PubMed  Google Scholar 

  • Brown AS, Schaefer CA, Quesenberry Jr CP, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry. 2005;162:767–73.

    Article  PubMed  Google Scholar 

  • Brown AS, Schaefer CA, Quesenberry Jr CP, Shen L, Susser ES. No evidence of relation between maternal exposure to herpes simplex virus type 2 and risk of schizophrenia? Am J Psychiatry. 2006;163:2178–80.

    Article  PubMed  Google Scholar 

  • Brown AS, Vinogradov S, Kremen WS, Poole JH, Deicken RF, Penner JD, et al. Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. Am J Psychiatry. 2009;166:683–90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2013;9:259–64 (published online ahead of print January 22).

    Google Scholar 

  • Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry. 2001a;58:1032–7.

    Article  CAS  PubMed  Google Scholar 

  • Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH. Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun. 2001b;15:411–20.

    Article  CAS  PubMed  Google Scholar 

  • Buka SL, Cannon TD, Torrey EF, Yolken RH, Collaborative Study Group on the Perinatal Origins of Severe Psychiatric Disorders. Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biol Psychiatry. 2008;63:809–15.

    Article  PubMed  Google Scholar 

  • Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012;67:287–94.

    Article  CAS  PubMed  Google Scholar 

  • Carvey PM, Chang Q, Lipton JW, Ling Z. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson’s disease. Front Biosci. 2003;8:s826–37.

    Article  CAS  PubMed  Google Scholar 

  • Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, et al. Autistic disorders and schizophrenia: Related or remote? An anatomical likelihood estimation. PLoS One. 2010;5:e12233.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clarke MC, Tanskanen A, Huttunen M, Whittaker JC, Cannon M. Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. Am J Psychiatry. 2009;166:1025–30.

    Article  PubMed  Google Scholar 

  • ClarkI A. How TNF, was recognized as a key mechanism of disease. Cytokine Growth Factor Rev. 2007;18:335–43.

    Article  Google Scholar 

  • Corcoran C, Walker E, Huot R, Mittal V, Tessner K, Kestler L, Malaspina D. The stress cascade and schizophrenia: etiology and onset. Schizophr Bull. 2003;29:671–92.

    Article  PubMed  Google Scholar 

  • Cunningham C, Campion S, Teeling J, Felton L, Perry VH. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun. 2007;21:490–502.

    Article  CAS  PubMed  Google Scholar 

  • Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Dammann O, Leviton A. Role of the fetus in perinatal infection and neonatal brain damage. Curr Opin Pediatr. 2000;12:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res. 2010;121:46–54.

    Article  PubMed Central  PubMed  Google Scholar 

  • Escobar M, Crouzin N, Cavalier M, Quentin J, Roussel J, Lanté F, et al. Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge. Biol Psychiatry. 2011;70:992–9.

    Article  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 2009;35:528–48.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry. 1999;4:145–54.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S, et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res. 2008;99:56–70.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fortier ME, Luheshi GN, Boksa P. Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav Brain Res. 2007;181:270–7.

    Article  PubMed  Google Scholar 

  • Gilmore JH, Jarskog LF. Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res. 1997;24:365–7.

    Article  CAS  PubMed  Google Scholar 

  • Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science. 2013;339:1095–9.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71:444–57.

    Article  PubMed  Google Scholar 

  • Halbreich U, Kahn LS. Hormonal aspects of schizophrenias: an overview. Psychoneuroendocrinology. 2003;28 Suppl 2:1–16.

    CAS  Google Scholar 

  • Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol. 2012;72:1335–48.

    Article  CAS  PubMed  Google Scholar 

  • Hopwood N, Maswanganyi T, Harden LM. Comparison of anorexia, lethargy, and fever induced by bacterial and viral mimetics in rats. Can J Physiol Pharmacol. 2009;87:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011;25:604–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kas MJ, Kahn RS, Collier DA, Waddington JL, Ekelund J, Porteous DJ, et al. Translational neuroscience of schizophrenia: seeking a meeting of minds between mouse and man. Sci Transl Med. 2011;3:102mr3.

    Google Scholar 

  • Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Physiol. 1994;267:R1596–605.

    CAS  PubMed  Google Scholar 

  • Kneeland RE, Fatemi SH. Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:35–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Q, Cheung C, Wei R, Hui ES, Feldon J, Meyer U, et al. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One. 2009;4:e6354.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipina TV, Zai C, Hlousek D, Roder JC, Wong AH. Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. J Neurosci. 2013;33:7654–66.

    Article  CAS  PubMed  Google Scholar 

  • Maynard TM, Sikich L, Lieberman JA, LaMantia AS. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull. 2001;27:457–76.

    Article  CAS  PubMed  Google Scholar 

  • McGrath JJ, Richards LJ. Why schizophrenia epidemiology needs neurobiology—and vice versa. Schizophr Bull. 2009;35:577–81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1988;45:189–92.

    Article  CAS  PubMed  Google Scholar 

  • Menninger KA. Psychoses associated with influenza, I: general data: statistical analysis. JAMA. 1919;72:235–41.

    Article  Google Scholar 

  • Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90:285–326.

    Article  PubMed  Google Scholar 

  • Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 2012;62:1308–21.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK. Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev. 2005;29:913–47.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci. 2006;26:4752–62.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Yee BK, Feldon J. The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist. 2007;13:241–56.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun. 2008a;22:469–86.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry. 2008b;13:208–21.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev. 2009a;33:1061–79.

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull. 2009b;35:959–72.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer U, Spoerri E, Yee BK, Schwarz MJ, Feldon J. Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia. Schizophr Bull. 2010;36:607–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res. 2011;69:26R–33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno JL, Kurita M, Holloway T, López J, Cadagan R, Martínez-Sobrido L, et al. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring. J Neurosci. 2011;31:1863–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: Revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 2013;12:406–14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mortensen PB, Nørgaard-Pedersen B, Waltoft BL, Sørensen TL, Hougaard D, Yolken RH. Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull. 2007;33:741–4.

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Donnell P, editor. Animal models of schizophrenia and related disorders. New York: Humana Press; 2011.

    Google Scholar 

  • Owen MJ. Implications of genetic findings for understanding schizophrenia. Schizophr Bull. 2012a;38:904–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Owen MJ. Intellectual disability and major psychiatric disorders: a continuum of neurodevelopmental causality. Br J Psychiatry. 2012b;200:268–9.

    Article  PubMed  Google Scholar 

  • Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry. 2006;59:546–54.

    Article  CAS  PubMed  Google Scholar 

  • Pineda DA, Palacio LG, Puerta IC, Merchán V, Arango CP, Galvis AY, et al. Environmental influences that affect attention deficit/hyperactivity disorder: study of a genetic isolate. Eur Child Adolesc Psychiatry. 2007;16:337–46.

    Article  PubMed  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I. Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry. 2001;70:842–51.

    Article  Google Scholar 

  • Piontkewitz Y, Assaf Y, Weiner I. Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biol Psychiatry. 2009;66:1038–46.

    Article  CAS  PubMed  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I. Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia. Schizophr Bull. 2011;37:1257–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I. Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology. 2012;62:1273–89.

    Article  CAS  PubMed  Google Scholar 

  • Reimer T, Brcic M, Schweizer M, Jungi TW. Poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol. 2008;83:1249–57.

    Article  CAS  PubMed  Google Scholar 

  • Richtand NM, Ahlbrand R, Horn P, Stanford K, Bronson SL, McNamara RK. Effects of risperidone and paliperidone pre-treatment on locomotor response following prenatal immune activation. J Psychiatr Res. 2011;45:1194–201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Samuelsson AM, Jennische E, Hansson HA, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1345–56.

    Article  CAS  PubMed  Google Scholar 

  • Selten JP, Frissen A, Lensvelt-Mulders G, Morgan VA. Schizophrenia and 1957 pandemic of influenza: meta-analysis. Schizophr Bull. 2010;36:219–28.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23:297–302.

    PubMed  Google Scholar 

  • Short SJ, Lubach GR, Karasin AI, Olsen CW, Styner M, Knickmeyer RC, et al. Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biol Psychiatry. 2010;67:965–73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Article  CAS  Google Scholar 

  • Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull. 2009;35:631–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Suvisaari J, Haukka J, Tanskanen A, Hovi T, Lönnqvist J. Association between prenatal exposure to poliovirus infection and adult schizophrenia. Am J Psychiatry. 1999;156:1100–2.

    CAS  PubMed  Google Scholar 

  • Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110:1–23.

    Article  PubMed  Google Scholar 

  • Torrey EF, Peterson MR. Slow and latent viruses in schizophrenia. Lancet. 1973;2:22–4.

    Article  CAS  PubMed  Google Scholar 

  • Torrey EF, Rawlings R, Waldman IN. Schizophrenic births and viral diseases in two states. Schizophr Res. 1988;1:73–7.

    Article  CAS  PubMed  Google Scholar 

  • Torrey EF, Bartko JJ, Yolken RH. Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr Bull. 2012;38:642–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuillermot S, Weber L, Feldon J, Meyer U. A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci. 2010;30:1270–87.

    Article  CAS  PubMed  Google Scholar 

  • Vuillermot S, Joodmardi E, Perlmann T, Ögren SO, Feldon J, Meyer U. Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J Neurosci. 2012;32:436–51.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Lipska BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res. 1995;16:87–110.

    Article  CAS  PubMed  Google Scholar 

  • Willette AA, Lubach GR, Knickmeyer RC, Short SJ, Styner M, Gilmore JH, Coe CL. Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behav Brain Res. 2011;219:108–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winter C, Reutiman TJ, Folsom TD, Sohr R, Wolf RJ, Juckel G, Fatemi SH. Dopamine and serotonin levels following prenatal viral infection in mouse—implications for psychiatric disorders such as schizophrenia and autism. Eur Neuropsychopharmacol. 2008;18:712–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101:311–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaretsky MV, Alexander JM, Byrd W, Bawdon RE. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103:546–50.

    Article  CAS  PubMed  Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I. Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology. 2003;28:1778–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, U. (2015). Developmental Immune Activation Models with Relevance to Schizophrenia. In: Müller, N., Myint, AM., Schwarz, M. (eds) Immunology and Psychiatry. Current Topics in Neurotoxicity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-13602-8_2

Download citation

Publish with us

Policies and ethics