Skip to main content

Neutral Sphingomyelinase 2: Structure, Function, and Regulation with Emphasis on Nitric Oxide Involvement and Potential Implications for Cancer Therapy

  • Chapter
  • First Online:
Nitric Oxide and Cancer: Pathogenesis and Therapy
  • 740 Accesses

Abstract

Mammalian neutral sphingomyelinase 2 is encoded by the gene smpd3 and belongs to the family of hydrolases which catalyze the breakdown of sphingomyelin to form ceramide and phosphocholine. The bioactive ceramide can then act as the second messenger molecule capable of mediating an array of cellular events, such as growth arrest and apoptosis. Recent studies have revealed that the expression and activity of neutral sphingomyelinase 2 are selectively regulated and this regulation can take place at the transcriptional level as well as at the post-translational level. Upon exposure to oxidative stress, endoplasmic reticulum stress, tumour necrosis factor alpha stimulation or anti-cancer drugs, altered neutral sphingomyelinase 2 activity directly translates into changes in ceramide levels which help cells mount an appropriate response. On the other hand, inappropriate activation or inhibition of neutral sphingomyelinase 2 could contribute to the development of pathological conditions such as cancer and endothelial dysfunction. In this chapter, we focus on current knowledge regarding neutral sphingomyelinase 2 structure, the regulation of its activity, its function and potential involvement in stress response and cancer genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APL:

Anionic phospholipid

ATRA:

All-trans retinoic acid

BAEC:

Bovine aortic endothelial cells

EED:

Embryonic ectodermal development

eNOS:

Endothelial nitric oxide synthase

iNOS:

Inducible nitric oxide synthase

nNOS:

Neuronal nitric oxide synthase

ER:

Endoplasmic reticulum

HAEC:

Human airway epithelial cells

HEK:

Human embryonic kidney

HSP:

Heat shock protein

MAPK:

Mitogen activated protein kinase

PKC:

Protein kinase C

ROS:

Reactive oxygen species

SM:

Sphingomyelin

SMase:

Sphingomyelinase

TNF:

Tumour necrosis factor

References

  1. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH Jr. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta. 2006;1758:1864–84.

    Article  CAS  PubMed  Google Scholar 

  2. Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC. Sphingolipids and cell death. Apoptosis. Int J Programmed Cell Death. 2007;12:923–39.

    Article  CAS  Google Scholar 

  3. Igarashi Y. Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. J Biochem. 1997;122:1080–7.

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien JS, Blankenhorn DH. Fatty acid composition of sphingomyelin and lecithin in normal human serum. Proc Soc Exp Biol Med. 1965;119:862–6.

    Article  PubMed  Google Scholar 

  5. Kishimoto Y, Agranoff BW, Radin NS, Burton RM. Comparison of the fatty acids of lipids of subcellular brain fractions. J Neurochem. 1969;16:397–404.

    Article  CAS  PubMed  Google Scholar 

  6. Koval M, Pagano RE. Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta. 1991;1082:113–25.

    Article  CAS  PubMed  Google Scholar 

  7. Allan D, Kallen KJ. Transport of lipids to the plasma membrane in animal cells. Prog Lipid Res. 1993;32:195–219.

    Article  CAS  PubMed  Google Scholar 

  8. Hill PA, Tumber A. Ceramide-induced cell death/survival in murine osteoblasts. J Endocrinol. 2010;206:225–33.

    Article  CAS  PubMed  Google Scholar 

  9. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50.

    Article  CAS  PubMed  Google Scholar 

  10. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994;269:3125–8.

    CAS  PubMed  Google Scholar 

  11. Otterbach B, Stoffel W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell. 1995;81:1053–61.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider PB, Kennedy EP. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res. 1967;8:202–9.

    CAS  PubMed  Google Scholar 

  13. Kirschnek S, Paris F, Weller M, Grassme H, Ferlinz K, Riehle A, Fuks Z, Kolesnick R, Gulbins E. CD95-miated apoptosis in vivo involves acid sphingomyelinase. J Biol Chem. 2000;275:27316–23.

    CAS  PubMed  Google Scholar 

  14. Komatsu M, Takahashi T, Abe T, Takahashi I, Ida H, Takada G. Evidence for the association of ultraviolet-C and H(2)O(2)-induced apoptosis with acid sphingomyelinase activation. Biochim Biophys Acta. 2001;1533:47–54.

    Article  CAS  PubMed  Google Scholar 

  15. Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996;86:189–99.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Gulbins E, Zhang Y. Oxidative stress triggers Ca-dependent lysosome trafficking and activation of acid sphingomyelinase. Cell Physiol Biochem. 2012;30:815–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Smith EL, Schuchman EH. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J. 2008;22:3419–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zeidan YH, Hannun YA. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med. 2010;10:454–66.

    Article  CAS  PubMed  Google Scholar 

  19. Duan RD. Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta. 2006;1761:281–91.

    Article  CAS  PubMed  Google Scholar 

  20. Duan RD, Nyberg L, Nilsson A. Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta. 1995;1259:49–55.

    Article  PubMed  Google Scholar 

  21. Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, Nilsson A, Duan RD. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice. J Lipid Res. 2011;52:771–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci U S A. 1998;95:3638–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sawai H, Domae N, Nagan N, Hannun YA. Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem. 1999;274:38131–9.

    Article  CAS  PubMed  Google Scholar 

  24. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem. 2006;281:13784–93.

    Article  CAS  PubMed  Google Scholar 

  25. Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS. Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res. 2008;6:795–807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hofmann K, Tomiuk S, Wolff G, Stoffel W. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A. 2000;97:5895–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Marchesini N, Luberto C, Hannun YA. Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem. 2003;278:13775–83.

    Article  CAS  PubMed  Google Scholar 

  28. Tani M, Hannun YA. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 2007;581:1323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wu BX, Clarke CJ, Matmati N, Montefusco D, Bartke N, Hannun YA. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J Biol Chem. 2011;286:22362–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tani M, Hannun YA. Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J Biol Chem. 2007;282:10047–56.

    Article  CAS  PubMed  Google Scholar 

  31. Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA. Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem. 2004;279:25101–11.

    Article  CAS  PubMed  Google Scholar 

  32. Milhas D, Clarke CJ, Idkowiak-Baldys J, Canals D, Hannun YA. Anterograde and retrograde transport of neutral sphingomyelinase-2 between the Golgi and the plasma membrane. Biochim Biophys Acta. 2010;1801:1361–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Levy M, Castillo SS, Goldkorn T. nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun. 2006;344:900–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Levy M, Khan E, Careaga M, Goldkorn T. Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol. 2009;297:L125–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Filosto S, Castillo S, Danielson A, Franzi L, Khan E, Kenyon N, Last J, Pinkerton K, Tuder R, Goldkorn T. Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol. 2011;44:350–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Clement AB, Gamerdinger M, Tamboli IY, Lutjohann D, Walter J, Greeve I, Gimpl G, Behl C. Adaptation of neuronal cells to chronic oxidative stress is associated with altered cholesterol and sphingolipid homeostasis and lysosomal function. J Neurochem. 2009;111:669–82.

    Article  CAS  PubMed  Google Scholar 

  37. Chaube R, Kallakunta VM, Espey MG, McLarty R, Faccenda A, Ananvoranich S, Mutus B. Endoplasmic reticulum stress-mediated inhibition of NSMase2 elevates plasma membrane cholesterol and attenuates NO production in endothelial cells. Biochim Biophys Acta. 2012;1821:313–23.

    Article  CAS  PubMed  Google Scholar 

  38. De Palma C Meacci E Perrotta C Bruni P Clementi E. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol. 2006;26:99–105.

    Article  PubMed  Google Scholar 

  39. Won JS, Im YB, Khan M, Singh AK, Singh I. The role of neutral sphingomyelinase produced ceramide in lipopolysaccharide-mediated expression of inducible nitric oxide synthase. J Neurochem. 2004;88:583–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kucuksayan E, Konuk EK, Demir N, Mutus B, Aslan M. Neutral sphingomyelinase inhibition decreases ER stress-mediated apoptosis and inducible nitric oxide synthase in retinal pigment epithelial cells. Free Radic Biol Med. 2014;72:113–23.

    Article  CAS  PubMed  Google Scholar 

  41. Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT, Bell DW, Scadden DT, Haber DA. Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood. 2008;111:4716–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim Biophys Acta. 2009;1789:681–90.

    Article  CAS  PubMed  Google Scholar 

  43. Goswami R, Ahmed M, Kilkus J, Han T, Dawson SA, Dawson G. Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2. J Neurosci Res. 2005;81:208–17.

    Article  CAS  PubMed  Google Scholar 

  44. Meyers-Needham M, Lewis JA, Gencer S, Sentelle RD, Saddoughi SA, Clarke CJ, Hannun YA, Norell H, da Palma TM, Nishimura M, Kraveka JM, Khavandgar Z, Murshed M, Cevik MO, Ogretmen B. Off-target function of the Sonic hedgehog inhibitor cyclopamine in mediating apoptosis via nitric oxide-dependent neutral sphingomyelinase 2/ceramide induction. Mol Cancer Ther. 2012;11:1092–102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Park B, Lee YM, Kim JS, Her Y, Kang JH, Oh SH, Kim HM. Neutral sphingomyelinase 2 modulates cytotoxic effects of protopanaxadiol on different human cancer cells. BMC Complement Altern Med. 2013;13:194.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Liu B, Hannun YA. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997;272:16281–7.

    Article  CAS  PubMed  Google Scholar 

  47. Okamoto Y, Obeid LM, Hannun YA. Bcl-xL interrupts oxidative activation of neutral sphingomyelinase. FEBS Lett. 2002;530:104–8.

    Article  CAS  PubMed  Google Scholar 

  48. Clarke CJ, Mediwala K, Jenkins RW, Sutton CA, Tholanikunnel BG, Hannun YA. Neutral sphingomyelinase-2 mediates growth arrest by retinoic acid through modulation of ribosomal S6 kinase. J Biol Chem. 2011;286:21565–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ito H, Tanaka K, Hagiwara K, Kobayashi M, Hoshikawa A, Mizutani N, Takagi A, Kojima T, Sobue S, Ichihara M, Suzuki M, Tamiya-Koizumi K, Nakamura M, Banno Y, Nozawa Y, Murate T. Transcriptional regulation of neutral sphingomyelinase 2 in all-trans retinoic acid-treated human breast cancer cell line, MCF-7. J Biochem. 2012;151:599–610.

    Article  CAS  PubMed  Google Scholar 

  50. Ahn KH, Kim SK, Choi JM, Jung SY, Won JH, Back MJ, Fu Z, Jang JM, Ha HC, Kim DK. Identification of Heat Shock Protein 60 as a regulator of neutral sphingomyelinase 2 and its role in dopamine uptake. PloS One. 2013;8:e67216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Clarke CJ, Truong TG, Hannun YA. Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem. 2007;282:1384–96.

    Article  CAS  PubMed  Google Scholar 

  52. Tellier E, Negre-Salvayre A, Bocquet B, Itohara S, Hannun YA, Salvayre R, Auge N. Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol. 2007;27:2997–3007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Barth BM, Gustafson SJ, Kuhn TB. Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-alpha. J Neurosci Res. 2012;90:229–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Philipp S, Puchert M, Adam-Klages S, Tchikov V, Winoto-Morbach S, Mathieu S, Deerberg A, Kolker L, Marchesini N, Kabelitz D, Hannun YA, Schütze S, Adam D. The Polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proc Natl Acad Sci U S A. 2010;107:1112–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Filosto S, Fry W, Knowlton AA, Goldkorn T. Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J Biol Chem. 2010;285:10213–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Filosto S, Ashfaq M, Chung S, Fry W, Goldkorn T. Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J Biol Chem. 2012;287:514–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Vance JE, Steenbergen R. Metabolism and functions of phosphatidylserine. Prog Lipid Res. 2005;44:207–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BM research related to this chapter is supported by grants from Seeds4Hope and Natural Sciences and Engineering Research Council (NSERC).

Conflict of interest

No potential conflicts of interest are disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Mutus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, B., Mutus, B. (2015). Neutral Sphingomyelinase 2: Structure, Function, and Regulation with Emphasis on Nitric Oxide Involvement and Potential Implications for Cancer Therapy. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_18

Download citation

Publish with us

Policies and ethics