Skip to main content

The Adrenergic System and Stem Cell-Mediated Myocardial Repair

  • Chapter
  • First Online:
The Cardiovascular Adrenergic System

Abstract

The continuous increase of average human life span is yielding a progressively older population pool. With the aging population and increasingly sedentary lifestyle, chronic cardiovascular diseases are approaching epidemic proportions in nearly all developed countries. Decline in cardiovascular performance is counteracted by the interaction of the sympathetic (adrenergic) nervous system (ANS) and the parasympathetic system. Acutely, the elevated activity of the adrenergic system will swiftly reestablish cardiac function and return to steady levels. However, a chronic manifestation of altered cardiac function is followed by prolonged and compensatory ANS hyperactivity, which over time will lead to increased pressure on the already weakened heart. Thus far, β-receptor blockade has been the main therapeutic approach with which the inhibition of the adrenergic drive has had a positive effect counteracting the progression of cardiovascular decline. With the emergence of new discoveries in stem cell research and their possible contribution to cardiac cell turnover and tissue repair, it is critical to evaluate the extent of the impact of the ANS on cardiac regeneration via the regulation of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res. 2013;113:739–53.

    Article  CAS  PubMed  Google Scholar 

  2. Caron MG, Lefkowitz RJ. Catecholamine receptors: structure, function, and regulation. Recent Prog Horm Res. 1993;48:277–90.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng M, Han QD, Xiao RP. Distinct beta-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance. Sheng Li Xue Bao. 2004;56:1–15.

    CAS  PubMed  Google Scholar 

  4. Keys JR, Koch WJ. The adrenergic pathway and heart failure. Recent Prog Horm Res. 2004;59:13–30.

    Article  CAS  PubMed  Google Scholar 

  5. Markowitz C. Response of explanted embryonic cardiac tissue to epinephrine and acetylcholine. Am J Physiol. 1931;97:271–5.

    CAS  Google Scholar 

  6. Hsu FY. The effect of adrenaline and acetylcholine on the heart rate of the chick embryo. Chin J Physiol. 1933;VII: 243–52.

    Google Scholar 

  7. Ebert SN, Thompson RP. Embryonic epinephrine synthesis in the rat heart before innervation: association with pacemaking and conduction tissue development. Circ Res. 2001;88:117–24.

    Article  CAS  PubMed  Google Scholar 

  8. Ebert SN, Rong Q, Boe S, Thompson RP, Grinberg A, Pfeifer K. Targeted insertion of the cre-recombinase gene at the phenylethanolamine n-methyltransferase locus: a new model for studying the developmental distribution of adrenergic cells. Dev Dyn. 2004;231:849–58.

    Article  CAS  PubMed  Google Scholar 

  9. Huang MH, Friend DS, Sunday ME, et al. An intrinsic adrenergic system in mammalian heart. J Clin Invest. 1996;98:1298–1303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ebert SN, Rong Q, Boe S, Pfeifer K. Catecholamine-synthesizing cells in the embryonic mouse heart. Ann N Y Acad Sci. 2008;1148:317–24.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995;374:640–3.

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi K, Morita S, Sawada H, et al. Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem. 1995;270:27235–43.

    Article  CAS  PubMed  Google Scholar 

  13. Ebert SN, Taylor DG. Catecholamines and development of cardiac pacemaking: An intrinsically intimate relationship. Cardiovasc Res. 2006;72:364–74.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature. 1995;374:643–6.

    Article  CAS  PubMed  Google Scholar 

  15. Matar AA, Chong JJ. Stem cell therapy for cardiac dysfunction. Springer plus. 2014;3:440 (1801-3-440. eCollection 2014).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhang L, Xu Q. Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol. 2014;34:1114–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A. 2007;104:17783–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2:a006692.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Frati C, Savi M, Graiani G, et al. Resident cardiac stem cells. Curr Pharm Des. 2011;17:3252–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann M, Nguemo F, Wagh V, Pfannkuche K, Hescheler J, Reppel M. Evidence for a critical role of catecholamines for cardiomyocyte lineage commitment in murine embryonic stem cells. PLoS ONE. 2013;8:e70913.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Klug S, Thiel R, Schwabe R, Merker HJ, Neubert D. Toxicity of beta-blockers in a rat whole embryo culture: Concentration-response relationships and tissue concentrations. Arch Toxicol. 1994;68:375–84.

    Article  CAS  PubMed  Google Scholar 

  22. Rohrer DK, Desai KH, Jasper JR, et al. Targeted disruption of the mouse beta1-adrenergic receptor gene: Developmental and cardiovascular effects. Proc Natl Acad Sci U S A. 1996;93:7375–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kudlacz EM, Slotkin TA. Regulation of neonatal rat lung compliance by beta-adrenergic receptor stimulation: Effects of prenatal exposure to terbutaline or dexamethasone. J Dev Physiol. 1990;14:307–10.

    CAS  PubMed  Google Scholar 

  24. Renick SE, Seidler FJ, McCook EC, Slotkin TA. Neuronal control of cardiac and hepatic macromolecule synthesis in the neonatal rat: Effects of sympathectomy. Pediatr Res. 1997;41:359–63.

    Article  CAS  PubMed  Google Scholar 

  25. Tseng YT, Kopel R, Stabila JP, et al. Beta-adrenergic receptors (betaAR) regulate cardiomyocyte proliferation during early postnatal life. FASEB J. 2001;15:1921–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rockman HA, Koch WJ, Lefkowitz RJ. Cardiac function in genetically engineered mice with altered adrenergic receptor signaling. Am J Physiol. 1997;272:H1553–9.

    CAS  PubMed  Google Scholar 

  27. Steinberg SF. The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res. 1999;85:1101–11.

    Article  CAS  PubMed  Google Scholar 

  28. Wobus AM, Kleppisch T, Maltsev V, Hescheler J. Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptors and Ca2+ channels. In Vitro Cell Dev Biol Anim. 1994;30 A:425–34.

    Article  Google Scholar 

  29. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–21.

    Article  CAS  PubMed  Google Scholar 

  30. Spiegel A, Shivtiel S, Kalinkovich A, et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34 + cells through wnt signaling. Nat Immunol. 2007;8:1123–31.

    Article  CAS  PubMed  Google Scholar 

  31. Fitch SR, Kimber GM, Wilson NK, et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell. 2012;11:554–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res. 2014 Aug 31. [Epub ahead of print].

    Google Scholar 

  33. Havasi P, Nabioni M, Soleimani M, Bakhshandeh B, Parivar K. Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Mol Biol Rep. 2013;40:3023–31.

    Article  CAS  PubMed  Google Scholar 

  34. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kuznetsov V, Pak E, Robinson RB, Steinberg SF. Beta 2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes. Circ Res. 1995;76:40–52.

    Article  CAS  PubMed  Google Scholar 

  36. Collino F, Bruno S, Deregibus MC, Tetta C, Camussi G. MicroRNAs and mesenchymal stem cells. Vitam Horm. 2011;87:291–320.

    Article  CAS  PubMed  Google Scholar 

  37. Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: Implications for muscle wasting and disease. Physiol Rev. 2008;88:729–67.

    Article  CAS  PubMed  Google Scholar 

  38. Ryall JG, Church JE, Lynch GS. Novel role for ss-adrenergic signalling in skeletal muscle growth, development and regeneration. Clin Exp Pharmacol Physiol. 2010;37:397–401.

    Article  CAS  PubMed  Google Scholar 

  39. Galasso G, De Rosa R, Ciccarelli M, et al. Beta2-adrenergic receptor stimulation improves endothelial progenitor cell-mediated ischemic neoangiogenesis. Circ Res. 2013;112:1026–34.

    Article  CAS  PubMed  Google Scholar 

  40. George AL, Bangalore-Prakash P, Rajoria S, et al. Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol. 2011;4:24.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Yasuda K, Khandare A, Burianovskyy L, et al. Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: Exchange of lysosomal pool. Aging (Albany NY). 2011;3:597–608.

    CAS  Google Scholar 

  42. Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens. 2005;23:97–104.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi K, Imanishi T, Akasaka T. Endothelial progenitor cell differentiation and senescence in an angiotensin II-infusion rat model. Hypertens Res. 2006;29:449–55.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Z, Peng J, Wang CJ, et al. Accelerated senescence of endothelial progenitor cells in hypertension is related to the reduction of calcitonin gene-related peptide. J Hypertens. 2010;28:931–9.

    Article  CAS  PubMed  Google Scholar 

  45. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  46. Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: A paradigm shift in human myocardial biology. Circ Res. 2011;109:941–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Anversa P, Leri A, Kajstura J. Cardiac regeneration. J Am Coll Cardiol. 2006;47:1769–76.

    Article  PubMed  Google Scholar 

  48. Khan M, Mohsin S, Avitabile D, et al. Beta-adrenergic regulation of cardiac progenitor cell death versus survival and proliferation. Circ Res. 2013;112:476–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Khan M, Mohsin S, Toko H, et al. Cardiac progenitor cells engineered with betaARKct have enhanced beta-adrenergic tolerance. Mol Ther. 2014;22:178–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bible LE, Pasupuleti LV, Alzate WD, et al. Early propranolol administration to severely injured patients can improve bone marrow dysfunction. J Trauma Acute Care Surg. 2014;77:54–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gumpert, A., Koch, W. (2015). The Adrenergic System and Stem Cell-Mediated Myocardial Repair. In: Lymperopoulos, A. (eds) The Cardiovascular Adrenergic System. Springer, Cham. https://doi.org/10.1007/978-3-319-13680-6_8

Download citation

Publish with us

Policies and ethics