Skip to main content

Update on the Role of Extracorporeal CO2 Removal as an Adjunct to Mechanical Ventilation in ARDS

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2015

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

Abstract

Despite new promising therapeutic interventions including protective ventilation, prone positioning, use of neuromuscular blockers and conservative fluid balance, acute respiratory distress syndrome (ARDS) remains a devastating disease [1, 2]. Mortality rates for ARDS have decreased over time but still remain around 40%, in large part a result of the hemodynamic complications of this syndrome [3]. ARDS has various etiologies and early diagnosis and intervention are key to improving outcomes [4]. Dominant features of ARDS include injury to the alveolar-capillary membrane, which results in severe hypoxemia, decrease in pulmonary compliance, and increase in pulmonary vascular resistance [5, 6]. At present, positive-pressure mechanical ventilation is the mainstay of symptomatic treatment for ARDS [1], but may further increase pulmonary hypertension and right ventricular (RV) afterload, leading to acute cor pulmonale and RV failure [6]. Moreover, mechanical ventilation induces additional lung injuries due to overdistention, repeated stretch to the alveoli, atelectotrauma, and increased inflammatory mediator levels [7]. The ARDSNet study reported a reduction in mortality with a ventilation strategy involving limitation of mean tidal volume to 6 ml/kg, as compared with a more traditional tidal volume of 12 ml/kg [1]. However, utilization of lower tidal volumes leads to permissive hypercapnia and most clinicians seldom use very low tidal volumes in practice. Indeed, the need to substantially reduce tidal volume to improve outcome in ARDS patients remains questionable because of the deleterious effects of hypercapnia [8]. In addition, lung injury persists even when tidal volumes are small [9] and further reduction in tidal volume beyond those recommended by ARDSNet may have outcome benefits [10], although not all agree [11]. Thus, modern care for ARDS requires a decision to maximally reduce ventilator settings to ensure lung protection and reduce exacerbation of lung injury while facing the metabolic consequences of this intervention. How can we enhance lung protection in ARDS while not causing metabolic disturbances?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  2. Zambon M, Vincent JL (2008) Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 133:1120–1127

    Article  PubMed  Google Scholar 

  3. Squara P, Dhainaut JF, Artigas A, Carlet J (1998) Hemodynamic profile in severe ARDS: results of the European Collaborative ARDS Study. Intensive Care Med 24:1018–1028

    Article  CAS  PubMed  Google Scholar 

  4. Gajic O, Dabbagh O, Park PK et al (2011) Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 183:462–470

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cancio LC, Batchinsky AI, Dubick MA et al (2007) Inhalation injury: pathophysiology and clinical care proceedings of a symposium conducted at the Trauma Institute of San Antonio, San Antonio, TX, USA on 28 March 2006. Burns 33:681–692

    Article  PubMed  Google Scholar 

  6. Lheritier G, Legras A, Caille A et al (2013) Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med 39:1734–1742

    Article  PubMed  Google Scholar 

  7. Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136

    Article  CAS  PubMed  Google Scholar 

  8. Ijland MM, Heunks LM, van der Hoeven JG (2010) Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care 14:237

    Article  PubMed  Google Scholar 

  9. Terragni PP, Rosboch G, Tealdi A et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166

    Article  CAS  PubMed  Google Scholar 

  10. Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245

    Article  PubMed Central  PubMed  Google Scholar 

  11. Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838

    Article  CAS  PubMed  Google Scholar 

  12. Pesenti A, Pelizzola A, Mascheroni D et al (1981) Low frequency positive pressure ventilation with extracorporeal CO2 removal (LEPPV-ECCO2R) in acute respiratory failure (ARF): technique. Trans Am Soc Artif Intern Organs 27:263–266

    CAS  PubMed  Google Scholar 

  13. Batchinsky AI, Jordan BS, Regn D et al (2011) Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med 39:1382–1387

    Article  PubMed  Google Scholar 

  14. Batchinsky AI, Chung K, Cannon J, Cancio LC (2011) Respiratory dialysis is not extracorporeal membrane oxygenation. The authors answer. Extracorporeal membrane oxygenation and respiratory dialysis: our expending tool box. Crit Care Med 39:2788–2789

    Article  Google Scholar 

  15. Terragni PP, Del Sorbo L, Mascia L et al (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835

    Article  PubMed  Google Scholar 

  16. Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150:1722–1737

    Article  CAS  Google Scholar 

  17. Laffey JG, Kavanagh BP (1999) Carbon dioxide and the critically ill – too little of a good thing? Lancet 354:1283–1286

    Article  CAS  PubMed  Google Scholar 

  18. O’Croinin D, Ni Chonghaile M, Higgins B, Laffey JG (2005) Bench-to-bedside review: Permissive hypercapnia. Crit Care 9:51–59

    Article  PubMed  Google Scholar 

  19. Vadasz I, Hubmayr RD, Nin N, Sporn PH, Sznajder JI (2012) Hypercapnia: a nonpermissive environment for the lung. Am J Respir Cell Mol Biol 46:417–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Curley G, Contreras MM, Nichol AD, Higgins BD, Laffey JG (2010) Hypercapnia and acidosis in sepsis: a double-edged sword? Anesthesiology 112:462–472

    Article  PubMed  Google Scholar 

  21. Nichol AD, O’Cronin DF, Howell K et al (2009) Infection-induced lung injury is worsened after renal buffering of hypercapnic acidosis. Crit Care Med 37:2953–2961

    Article  PubMed  Google Scholar 

  22. Briva A, Vadasz I, Lecuona E et al (2007) High CO2 levels impair alveolar epithelial function independently of pH. PLoS One 2:e1238

    Article  PubMed Central  PubMed  Google Scholar 

  23. Stengl M, Ledvinova L, Chvojka J et al (2013) Effects of clinically relevant acute hypercapnic and metabolic acidosis on the cardiovascular system: an experimental porcine study. Crit Care 17:R303

    Article  PubMed Central  PubMed  Google Scholar 

  24. Morimont P, Lambermont B, Ghuysen A et al (2008) Effective arterial elastance as an index of pulmonary vascular load. Am J Physiol Heart Circ Physiol 294:H2736–H2742

    Article  CAS  PubMed  Google Scholar 

  25. Viitanen A, Salmenpera M, Heinonen J (1990) Right ventricular response to hypercarbia after cardiac surgery. Anesthesiology 73:393–400

    Article  CAS  PubMed  Google Scholar 

  26. Sagawa KML, Suga H, Sunagawa K (1988) Cardiovascular interaction. In: Sagawa K (ed) Cardiac Contraction and the Pressure–Volume Relationship. Oxford University Press, New York, pp 232–298

    Google Scholar 

  27. Morimont P, Lambermont B, Desaive T et al (2013) Right ventriculoarterial coupling in acute respiratory distress syndrome (ARDS) and expected benefits of CO2 removal therapy. J Crit Care 28:e30

    Article  Google Scholar 

  28. Weber T, Tschernich H, Sitzwohl C et al (2000) Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 162:1361–1365

    Article  CAS  PubMed  Google Scholar 

  29. Kolobow T, Gattinoni L, Tomlinson T, Pierce JE (1978) An alternative to breathing. J Thorac Cardiovasc Surg 75:261–266

    CAS  PubMed  Google Scholar 

  30. Gattinoni L, Agostoni A, Pesenti A et al (1980) Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet 2:292–294

    Article  CAS  PubMed  Google Scholar 

  31. Terragni P, Maiolo G, Ranieri VM (2012) Role and potentials of low-flow CO(2) removal system in mechanical ventilation. Curr Opin Crit Care 18:93–98

    Article  PubMed  Google Scholar 

  32. Pesenti A, Patroniti N, Fumagalli R (2010) Carbon dioxide dialysis will save the lung. Crit Care Med 38(10 Suppl):S549–S554

    Article  CAS  PubMed  Google Scholar 

  33. Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363

    Article  PubMed  Google Scholar 

  34. Del Sorbo L, Ranieri VM (2010) We do not need mechanical ventilation any more. Crit Care Med 38(10 Suppl):S555–S558

    Article  PubMed  Google Scholar 

  35. Barrett KBS, Boitano S, Brooks H (2003) Ganong’s Review of Medical Physiology, 23rd edn. Mc Graw Hill, New York, pp 587–607

    Google Scholar 

  36. Park M, Costa EL, Maciel AT et al (2013) Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome. PLoS One 8:e54954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Toomasian JM, Schreiner RJ, Meyer DE (2005) A polymethylpentene fiber gas exchanger for long-term extracorporeal life support. ASAIO J 51:390–397

    Article  CAS  PubMed  Google Scholar 

  38. Morimont P, Desaive T, Guiot J et al (2014) Effects of veno-venous CO2 removal therapy on pulmonary circulation in an ARDS model. Intensive Care Medicine Experimental 2(Suppl 1):P45 (abst)

    Article  Google Scholar 

  39. Scaravilli V, Kreyer S, Linden K et al (2014) Modular extracorporeal life support: effects of ultrafiltrate recirculation on the performance of an extracorporeal carbon dioxide removal device. ASAIO J 60:335–341

    Article  CAS  PubMed  Google Scholar 

  40. Zanella A, Mangili P, Giani M et al (2014) Extracorporeal carbon dioxide removal through ventilation of acidified dialysate: an experimental study. J Heart Lung Transplant 33:536–541

    Article  PubMed  Google Scholar 

  41. Cove ME, MacLaren G, Federspiel WJ, Kellum JA (2012) Bench to bedside review: Extracorporeal carbon dioxide removal, past present and future. Crit Care 16:232

    Article  PubMed Central  PubMed  Google Scholar 

  42. Bein T, Weber-Carstens S, Goldmann A et al (2013) Lower tidal volume strategy ( approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39:847–856

    Article  PubMed Central  PubMed  Google Scholar 

  43. Forster C, Schriewer J, John S, Eckardt KU, Willam C (2013) Low-flow CO(2) removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care 17:R154

    Article  PubMed Central  PubMed  Google Scholar 

  44. Rousseau AF, Damas P, Renwart L (2014) Use of a pediatric oxygenator integrated in a veno-venous hemofiltration circuit to remove CO: A case report in a severe burn patient with refractory hypercapnia. Burns 40:e47–e50

    Article  Google Scholar 

  45. Fitzgerald M, Millar J, Blackwood B et al (2014) Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review. Crit Care 18:222

    Article  PubMed  Google Scholar 

  46. Ranieri VM, Rubenfeld GD, Thompson BT et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533

    PubMed  Google Scholar 

  47. Cardenas VJ Jr., Miller L, Lynch JE, Anderson MJ, Zwischenberger JB (2006) Percutaneous venovenous CO2 removal with regional anticoagulation in an ovine model. ASAIO J 52:467–470

    Article  CAS  PubMed  Google Scholar 

  48. Larsson M, Rayzman V, Nolte MW et al (2014) A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 6:222ra17

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Morimont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland and BioMed Central Ltd.

About this chapter

Cite this chapter

Morimont, P., Batchinsky, A., Lambermont, B. (2015). Update on the Role of Extracorporeal CO2 Removal as an Adjunct to Mechanical Ventilation in ARDS. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics