Skip to main content

Control of Autophagy in Parkinson’s Disease

  • Chapter
  • First Online:
Toxicity and Autophagy in Neurodegenerative Disorders

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a dysregulation of cellular degradation system. An accumulation of misfolded proteins has been founded in the brains of parkinsonian patients, causing neuroinflammation and oxidative stress, and leading to a progressive neurodegeneration. Autophagy plays an important role in the progression of PD. In this chapter, we analyze the relationship of different types of autophagy (microautophagy, chaperone-mediated autophagy (CMA) and macroautophagy) with the oxidative stress and with several proteins involved in PD, showing deregulation of these degradative processes when these proteins are mutated. Also, we show a possible therapeutic alternative based on autophagy inducers that might be a potential drug for PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARE:

Antioxidant response element

Atgs:

Autophagy-related genes

AV:

Autophagic vacuole

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

Δψm:

Mitochondrial membrane potential

ΔN-PINK1:

Cleaved PINK1

CMA:

Chaperone mediated autophagy

CNS:

Central nervous system

COR:

C-terminal of ROC

DA:

Dopamine

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulatde kinase

Fbxo7:

F-box protein 7

FCCP:

Carbonyl cyanide p-trifluoromethoxyphenylhydrazone

FL-PINK1:

Full-length PINK1; GSH, glutathione

Hsc70:

Heat-shock cognate 70

Hsp90:

Heat shock proteins 90

JDP2:

Jun dimerization protein 2

Keap1:

Kelch-like ECH-associated protein 1

L-DOPA:

L-3,4-dihydroxyphenylalanine

LAMP2A :

Lysosomal associated membrane protein-2A

LB:

Lewy body

LC3:

Microtubule-associated protein 1 light chain 3

LRR:

Leucine-rich repeat

LRRK2:

Leucine rich-repeat-kinase 2

MAO-B:

monoamine oxidase B

MAPK:

Mitogen-activated protein kinase

MafK:

v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog K

Mfn:

Mitofusin

MPP+ :

1-methyl-7-phenylpyridine

MPTP:

1-methyl–4-phenyl-1,2,3,6-tetrahidropyridine

mTOR:

Mammalian target of rapamycin

NK-B:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells

NRF-1:

Nuclear respiratory factor 1

Nrf2:

Nuclear factor (erythroid-derived)-like 2

6-OHDA:

6-hidroxydopamine

PARL:

Presenilin-associated rhomboid-like

PARIS:

Parkin interacting substrate

PARL:

Presenelin-associated rhomboid-like

PBR:

Ring-in-between-ring; PD, Parkinson’s disease

PGC-1α:

Peroxisome proliferator-activated receptor gamma

PI3K:

Phosphoinositide-3-kinase

PINK1:

Phosphatase and tensin homolog (PTEN)-induced kinase 1

PP2A:

Protein phosphatase type 2A

PQ:

Paraquat

RING:

Really interesting new gene domain

ROC:

Ras of complex proteins

ROS:

Reactive oxygen species

SMAF:

Small Maf proteins

SMERs:

Small molecule enhancers of rapamycin

α-syn:

α-synuclein

TFAM:

Mitochondrial transcription factor A

ULK1:

Unc-51-like kinase

UPS:

Ubiquitin proteasome system

UCH-L1:

Ubiquitin C-terminal hydrolase L1

VDAC:

Voltage-dependent anion channel

WT:

Wild type

References

  1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.

    PubMed  Google Scholar 

  2. Rajput AH. Frequency and cause of Parkinson’s disease. Can J Neurol Sci. 1992;19(1 Suppl):103–7.

    CAS  PubMed  Google Scholar 

  3. Hughes AJ, et al. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993;50(2):140–8.

    CAS  PubMed  Google Scholar 

  4. Lee CS, et al. Clinical observations on the rate of progression of idiopathic parkinsonism. Brain. 1994;117(Pt 3):501–7.

    PubMed  Google Scholar 

  5. Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Parkinsonism Relat Disord. 1998;4(2):53–7.

    CAS  PubMed  Google Scholar 

  6. Agid Y, et al., The efficacy of levodopa treatment declines in the course of Parkinson’s disease: do nondopaminergic lesions play a role? Adv Neurol. 1990;53:83–100.

    CAS  PubMed  Google Scholar 

  7. Aarsland D, et al. Frequency of dementia in Parkinson disease. Arch Neurol. 1996;53(6):538–42.

    CAS  PubMed  Google Scholar 

  8. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.

    CAS  PubMed  Google Scholar 

  9. Benmoyal-Segal L, Soreq H. Gene-environment interactions in sporadic Parkinson’s disease. J Neurochem. 2006;97(6):1740–55.

    CAS  PubMed  Google Scholar 

  10. Langston JW, Ballard PA Jr. Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med. 1983;309(5):310.

    CAS  PubMed  Google Scholar 

  11. Gerlach M, Riederer P. Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm. 1996;103(8–9):987–1041.

    CAS  PubMed  Google Scholar 

  12. Bove J, et al. Toxin-induced models of Parkinson’s disease. NeuroRx. 2005;2(3):484–94.

    PubMed Central  PubMed  Google Scholar 

  13. Gonzalez-Polo RA, Soler G, Fuentes JM. MPP+: mechanism for its toxicity in cerebellar granule cells. Mol Neurobiol. 2004;30(3):253–64.

    CAS  PubMed  Google Scholar 

  14. Gonzalez-Polo RA, et al. Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Res. 2004;1011(2):170–6.

    CAS  PubMed  Google Scholar 

  15. Gonzalez-Polo RA, et al. Relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with paraquat: could autophagy be a "brake" in paraquat-induced apoptotic death? Autophagy. 2007;3(4):366–7.

    CAS  PubMed  Google Scholar 

  16. Gonzalez-Polo RA, et al. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci. 2007;97(2):448–58.

    CAS  PubMed  Google Scholar 

  17. Gonzalez-Polo RA, et al. Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants. Cell Biol Int. 2004;28(5):373–80.

    CAS  PubMed  Google Scholar 

  18. Niso-Santano M, et al. Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: role of c-Jun N-terminal kinase in paraquat-induced cell death. Toxicol Sci. 2006;92(2):507–15.

    CAS  PubMed  Google Scholar 

  19. Gitler AD, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41(3):308–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Poskanzer DC, Schwab RS. Cohort analysis of Parkinson’s syndrome: evidence for a single etiology related to subclinical infection about 1920. J Chronic Dis. 1963;16:961–73.

    CAS  PubMed  Google Scholar 

  21. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55.

    PubMed  Google Scholar 

  22. Langston JW, et al. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett. 1984;48(1):87–92.

    CAS  PubMed  Google Scholar 

  23. Lotharius J, O’Malley KL. Role of mitochondrial dysfunction and dopamine-dependent oxidative stress in amphetamine-induced toxicity. Ann Neurol. 2001;49(1):79–89.

    CAS  PubMed  Google Scholar 

  24. Tetrud JW, Langston JW. MPTP-induced parkinsonism as a model for Parkinson’s disease. Acta Neurol Scand Suppl. 1989;126:35–40.

    CAS  PubMed  Google Scholar 

  25. Farhoudi M, et al. Serum iron and ferritin level in idiopathic Parkinson. Pak J Biol Sci. 2012;15(22):1094–7.

    PubMed  Google Scholar 

  26. Jellinger KA. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int Rev Neurobiol. 2013;110:1–47.

    CAS  PubMed  Google Scholar 

  27. Ngwa HA, et al. Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity. Neurotoxicology. 2013;43:73–81.

    PubMed Central  PubMed  Google Scholar 

  28. Winneke G. Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci. 2011;308(1–2):9–15.

    CAS  PubMed  Google Scholar 

  29. Singh AK, et al. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol. 2012;10(1):64–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Niso-Santano M, et al. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic Biol Med. 2010;48(10):1370–81.

    CAS  PubMed  Google Scholar 

  31. Tamilselvam K, et al. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinsons’ disease. Oxid Med Cell Longev. 2013;2013:102741.

    PubMed Central  PubMed  Google Scholar 

  32. De Michele G, et al. Etiology of Parkinson’s disease. The role of environment and heredity. Adv Neurol. 1996;69:19–24.

    CAS  PubMed  Google Scholar 

  33. De Michele G, et al. Environmental and genetic risk factors in Parkinson’s disease: a case-control study in southern Italy. Mov Disord. 1996;11(1):17–23.

    CAS  PubMed  Google Scholar 

  34. Polymeropoulos MH, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7.

    CAS  PubMed  Google Scholar 

  35. Spillantini MG, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A. 1998;95(11):6469–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Kitada T, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.

    CAS  PubMed  Google Scholar 

  37. van Duijn CM, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet. 2001;69(3):629–34.

    PubMed Central  PubMed  Google Scholar 

  38. Bonifati V, et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003;24(3):159–60.

    CAS  PubMed  Google Scholar 

  39. Bonifati V, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256–9.

    CAS  PubMed  Google Scholar 

  40. Morais VA, et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009;1(2):99–111.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Chan SL, Angeles DC, Tan EK. Targeting leucine-rich repeat kinase 2 in Parkinson’s disease. Expert Opin Ther Targets. 2013;17(12):1471–82.

    CAS  PubMed  Google Scholar 

  42. Reinhardt P, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013;12(3):354–67.

    CAS  PubMed  Google Scholar 

  43. Bravo-San Pedro JM, et al. Possible involvement of the relationship of LRRK2 and autophagy in Parkinson’s disease. Biochem Soc Trans. 2012;40(5):1129–33.

    CAS  PubMed  Google Scholar 

  44. Tsika E, Moore DJ. Mechanisms of LRRK2-mediated neurodegeneration. Curr Neurol Neurosci Rep. 2012;12(3):251–60.

    CAS  PubMed  Google Scholar 

  45. Leroy E, et al. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395(6701):451–2.

    CAS  PubMed  Google Scholar 

  46. Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005;6(1):79–87.

    CAS  PubMed  Google Scholar 

  47. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.

    CAS  PubMed  Google Scholar 

  48. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001;2(3):211–6.

    CAS  PubMed  Google Scholar 

  49. Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett. 2007;581(11):2156–61.

    CAS  PubMed  Google Scholar 

  50. Komatsu M, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–4.

    CAS  PubMed  Google Scholar 

  51. Kondo Y, Kondo S. Autophagy and cancer therapy. Autophagy. 2006;2(2):85–90.

    PubMed  Google Scholar 

  52. Nakai A, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–24.

    CAS  PubMed  Google Scholar 

  53. Masiero E, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10(6):507–15.

    CAS  PubMed  Google Scholar 

  54. Singh R, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009;119(11):3329–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Ravikumar B, Rubinsztein DC. Can autophagy protect against neurodegeneration caused by aggregate-prone proteins? Neuroreport. 2004;15(16):2443–5.

    PubMed  Google Scholar 

  56. Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007;6(4):352–61.

    CAS  PubMed  Google Scholar 

  57. Anglade P, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol. 1997;12(1):25–31.

    CAS  PubMed  Google Scholar 

  58. Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol. 2005;6(6):505–10.

    CAS  PubMed  Google Scholar 

  59. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. 2001;8(6):569–81.

    CAS  PubMed  Google Scholar 

  60. Colman RJ, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Bursch W, et al. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci. 2000;926:1–12.

    CAS  PubMed  Google Scholar 

  62. Yla-Anttila P, et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 2009;5(8):1180–5.

    PubMed  Google Scholar 

  63. Mizushima N, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152(4):657–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Klionsky DJ, et al. How shall I eat thee? Autophagy. 2007;3(5):413–6.

    PubMed  Google Scholar 

  65. Baba M, et al. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol. 1994;124(6):903–13.

    CAS  PubMed  Google Scholar 

  66. Fengsrud M, et al. Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res. 1995;221(2):504–19.

    CAS  PubMed  Google Scholar 

  67. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell. 2002;1(1):11–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol. 2004;36(12):2445–62.

    CAS  PubMed  Google Scholar 

  69. Djavaheri-Mergny M, et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem. 2006;281(41):30373–82.

    CAS  PubMed  Google Scholar 

  70. Pattingre S, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.

    CAS  PubMed  Google Scholar 

  71. Petiot A, et al. Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem. 2000;275(2):992–8.

    CAS  PubMed  Google Scholar 

  72. Dagda RK, et al. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy. 2008;4(6):770–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Kulich SM, Chu CT. Role of reactive oxygen species in extracellular signal-regulated protein kinase phosphorylation and 6-hydroxydopamine cytotoxicity. J Biosci. 2003;28(1):83–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009;16(7):1040–52.

    CAS  PubMed  Google Scholar 

  75. Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol. 2005;37(12):2478–503.

    CAS  PubMed  Google Scholar 

  76. Brieger K, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.

    CAS  PubMed  Google Scholar 

  77. Krause KH, Bedard K. NOX enzymes in immuno-inflammatory pathologies. Semin Immunopathol. 2008;30(3):193–4.

    PubMed  Google Scholar 

  78. Danielson SR, Andersen JK. Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med. 2008;44(10):1787–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Seet RC, et al. Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med. 2010;48(4):560–6.

    CAS  PubMed  Google Scholar 

  80. Tsang AH, Chung KK. Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):643–50.

    CAS  PubMed  Google Scholar 

  81. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272(31):19095–8.

    CAS  PubMed  Google Scholar 

  82. Lee DH, Gold R, Linker RA. Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci. 2012;13(9):11783–803.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Vila M, et al. Lysosomal membrane permeabilization in Parkinson disease. Autophagy. 2011;7(1):98–100.

    PubMed  Google Scholar 

  84. Starke-Reed PE, Oliver CN. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys. 1989;275(2):559–67.

    CAS  PubMed  Google Scholar 

  85. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7.

    CAS  PubMed  Google Scholar 

  86. Kumar H, et al. The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci. 2012;13(8):10478–504.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59(5):1609–23.

    CAS  PubMed  Google Scholar 

  88. Lopez-Erauskin J, et al. Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol. 2011;70(1):84–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Sherer TB, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23(34):10756–64.

    CAS  PubMed  Google Scholar 

  90. Testa CM, Sherer TB, Greenamyre JT. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005;134(1):109–18.

    CAS  PubMed  Google Scholar 

  91. Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol. 2001;14(3):271–8.

    CAS  PubMed  Google Scholar 

  92. Conway KA, et al. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001;294(5545):1346–9.

    CAS  PubMed  Google Scholar 

  93. Martinez-Vicente M, et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008;118(2):777–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Lotharius J, Brundin P. Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet. 2002;11(20):2395–407.

    CAS  PubMed  Google Scholar 

  95. LaVoie MJ, et al. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11(11):1214–21.

    CAS  PubMed  Google Scholar 

  96. Nishikawa K, et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun. 2003;304(1):176–83.

    CAS  PubMed  Google Scholar 

  97. Petersen P. The dialogue principle in medical management. Diskussionsforum Med Ethik. 1991;7:XXXVII–XXXVIII.

    PubMed  Google Scholar 

  98. Choi J, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem. 2004;279(13):13256–64.

    CAS  PubMed  Google Scholar 

  99. Choi J, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem. 2006;281(16):10816–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Kuhn DM, et al. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J Neurochem. 1999;73(3):1309–17.

    CAS  PubMed  Google Scholar 

  101. Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem. 1999;73(3):1127–37.

    CAS  PubMed  Google Scholar 

  102. Lee HJ, et al. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem. 2002;277(7):5411–7.

    CAS  PubMed  Google Scholar 

  103. Van Laar VS, et al. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis. 2009;34(3):487–500.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Betarbet R, et al. Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis. 2006;22(2):404–20.

    CAS  PubMed  Google Scholar 

  105. Muftuoglu M, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord. 2004;19(5):544–8.

    PubMed  Google Scholar 

  106. Bekris LM, Mata IF, Zabetian CP. The genetics of Parkinson disease. J Geriatr Psychiatry Neurol. 2010;23(4):228–42.

    PubMed Central  PubMed  Google Scholar 

  107. Gandhi S, et al. PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009;33(5):627–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Irrcher I, et al. Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet. 2010;19(19):3734–46.

    CAS  PubMed  Google Scholar 

  109. McGeer PL, et al. Microglia in degenerative neurological disease. Glia. 1993;7(1):84–92.

    CAS  PubMed  Google Scholar 

  110. Wang L, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp Neurol. 2014;251:22–9.

    CAS  PubMed  Google Scholar 

  111. Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm. 2010;117(8):971–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Zhang M, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100:30–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Tong KI, et al. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem. 2006;387(10–11):1311–20.

    CAS  PubMed  Google Scholar 

  114. Tanigawa S, et al. Jun dimerization protein 2 is a critical component of the Nrf2/MafK complex regulating the response to ROS homeostasis. Cell Death Dis. 2013;4:e921.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60.

    CAS  PubMed  Google Scholar 

  116. Milani P, et al. SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev. 2013;2013:836760.

    PubMed Central  PubMed  Google Scholar 

  117. Lopez-Otin C, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Bender A, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.

    CAS  PubMed  Google Scholar 

  119. Kraytsberg Y, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20.

    CAS  PubMed  Google Scholar 

  120. Beilina A, et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A. 2005;102(16):5703–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Silvestri L, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet. 2005;14(22):3477–92.

    CAS  PubMed  Google Scholar 

  122. Shimura H, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–5.

    CAS  PubMed  Google Scholar 

  123. Trempe JF, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 2013;340(6139):1451–5.

    CAS  PubMed  Google Scholar 

  124. Riley BE, et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun. 2013;4:1982.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Clark IE, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441(7097):1162–6.

    CAS  PubMed  Google Scholar 

  126. Park J, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441(7097):1157–61.

    CAS  PubMed  Google Scholar 

  127. Yang Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A. 2006;103(28):10793–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Narendra DP, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298.

    PubMed Central  PubMed  Google Scholar 

  129. Matenia D, et al. Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport. J Biol Chem. 2012;287(11):8174–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1):3–5.

    CAS  PubMed  Google Scholar 

  131. Deas E, et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet. 2011;20(5):867–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Meissner C, et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem. 2011;117(5):856–67.

    CAS  PubMed  Google Scholar 

  133. Whitworth AJ, et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech. 2008;1(2–3):168–74; discussion 173.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Takatori S, Ito G, Iwatsubo T. Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett. 2008;430(1):13–7.

    CAS  PubMed  Google Scholar 

  135. Shi G, et al. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet. 2011;20(10):1966–74.

    CAS  PubMed  Google Scholar 

  136. Jin SM, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010;191(5):933–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Matsuda N, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Vives-Bauza C, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Okatsu K, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 2012;3:1016.

    PubMed Central  PubMed  Google Scholar 

  140. Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Gomez-Sanchez R, et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis. 2014;62:426–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Kim Y, et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 2008;377(3):975–80.

    CAS  PubMed  Google Scholar 

  143. Kondapalli C, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2012;2(5):120080.

    PubMed Central  PubMed  Google Scholar 

  144. Shiba-Fukushima K, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2012;2:1002.

    PubMed Central  PubMed  Google Scholar 

  145. Sha D, Chin LS, Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet. 2010;19(2):352–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Geisler S, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31.

    CAS  PubMed  Google Scholar 

  147. Gegg ME, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 2010;19(24):4861–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Yoshii SR, et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286(22):19630–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Van Humbeeck C, et al. Parkin interacts with Ambra1 to induce mitophagy. J Neurosci. 2011;31(28):10249–61.

    CAS  PubMed  Google Scholar 

  150. Burchell VS, et al. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci. 2013;16(9):1257–65.

    CAS  PubMed  Google Scholar 

  151. Exner N, et al. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Su YC, Qi X. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet. 2013;22(22):4545–61.

    CAS  PubMed  Google Scholar 

  153. Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111(9):1208–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Yan J, et al. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate. J Nutr Biochem. 2012;23(7):716–24.

    CAS  PubMed  Google Scholar 

  155. Zhu JH, et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol. 2007;170(1):75–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Poole AC, et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One. 2010;5(4):e10054.

    PubMed Central  PubMed  Google Scholar 

  157. Wang X, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893–906.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Kuroda Y, et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet. 2006;15(6):883–95.

    CAS  PubMed  Google Scholar 

  159. Shin JH, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144(5):689–702.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Johnson BN, et al. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A. 2012;109(16):6283–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Li X, et al. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants. J Neurochem. 2007;103(1):238–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Seol W. Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson’s disease. BMB Rep. 2010;43(4):233–44.

    CAS  PubMed  Google Scholar 

  163. Waxman EA, et al. Leucine-rich repeat kinase 2 expression leads to aggresome formation that is not associated with alpha-synuclein inclusions. J Neuropathol Exp Neurol. 2009;68(7):785–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Kamikawaji S, Ito G, Iwatsubo T. Identification of the autophosphorylation sites of LRRK2. BioChemistry. 2009;48(46):10963–75.

    CAS  PubMed  Google Scholar 

  165. Pungaliya PP, et al. Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif. PLoS One. 2010;5(10):e13672.

    PubMed Central  PubMed  Google Scholar 

  166. Vancraenenbroeck R, et al. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. Biochim Biophys Acta. 2012;1824(3):450–60.

    CAS  PubMed  Google Scholar 

  167. Civiero L, et al. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS One. 2012;7(8):e43472.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Bravo-San Pedro JM, et al. Parkinson’s disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies. Parkinsons Dis. 2012;2012:151039.

    PubMed Central  PubMed  Google Scholar 

  169. Zimprich A, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44(4):601–7.

    CAS  PubMed  Google Scholar 

  170. Golub Y, et al. Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism Relat Disord. 2009;15(7):539–41.

    PubMed  Google Scholar 

  171. Nichols RJ, et al. Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease. Biochem J. 2009;424(1):47–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Bravo-San Pedro JM, et al. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci. 2013;70(1):121–36.

    CAS  PubMed  Google Scholar 

  173. Migheli R, et al. LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization. PLoS One. 2013;8(10):e77198.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Plowey ED, et al. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem. 2008;105(3):1048–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Schapansky J, et al. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet. 2014;23(16):4201–14. doi:10.1093/hmg/ddu138.First published online: March 27, 2014.

    Google Scholar 

  176. Park HJ, et al. Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol Aging. 2014;35(8):1920–28. doi:10.1016/j.neurobiolaging.2014.01.028. Epub 29 Jan 2014‥

    Google Scholar 

  177. Manzoni C, et al. Pathogenic Parkinson’s disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun. 2013;441(4):862–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Friedman LG, et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci. 2012;32(22):7585–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Chen LL, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR Pathway. J Neuroimmune Pharmacol. 2014;9(3):380–87.doi:10.1007/s11481-014-9528-2. Epub 13 Feb 2014.

    Google Scholar 

  180. Ramonet D, et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One. 2011;6(4):e18568.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Lynch-Day MA, et al. The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(4):a009357.

    PubMed Central  PubMed  Google Scholar 

  182. Spillantini MG, et al. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.

    CAS  PubMed  Google Scholar 

  183. Rott R, et al. Alpha-synuclein fate is determined by USP9X-regulated monoubiquitination. Proc Natl Acad Sci U S A. 2011;108(46):18666–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Pan PY, Yue Z. Genetic causes of Parkinson’s disease and their links to autophagy regulation. Parkinsonism Relat Disord. 2014;20(Suppl 1);S154–7.

    PubMed  Google Scholar 

  185. Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 2012;124(2):153–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Hyun CH, et al. LRRK2 as a potential genetic modifier of synucleinopathies: interlacing the two major genetic factors of Parkinson’s disease. Exp Neurobiol. 2013;22(4):249–57.

    PubMed Central  PubMed  Google Scholar 

  187. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990;15(8):305–9.

    CAS  PubMed  Google Scholar 

  188. Cuervo AM, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.

    CAS  PubMed  Google Scholar 

  189. Orenstein SJ, et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16(4):394–406.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Mak SK, et al. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem. 2010;285(18):13621–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Vogiatzi T, et al. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283(35):23542–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Alvarez-Erviti L, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 2010;67(12):1464–72.

    PubMed  Google Scholar 

  193. Yue Z, Yang XW. Dangerous duet: LRRK2 and alpha-synuclein jam at CMA. Nat Neurosci. 2013;16(4):375–7.

    CAS  PubMed  Google Scholar 

  194. Xilouri M, et al. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One. 2009;4(5):e5515.

    PubMed Central  PubMed  Google Scholar 

  195. Xilouri M, et al. LAMP2A as a therapeutic target in Parkinson disease. Autophagy. 2013;9(12):2166–8.

    CAS  PubMed  Google Scholar 

  196. Masliah E, et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron. 2005;46(6):857–68.

    CAS  PubMed  Google Scholar 

  197. Dehay B, et al. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30(37):12535–44.

    CAS  PubMed  Google Scholar 

  198. Sarkar S, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007;282(8):5641–52.

    CAS  PubMed  Google Scholar 

  199. Gonzalez-Polo R, et al. Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem. 2009;109(3):889–98.

    CAS  PubMed  Google Scholar 

  200. Ashoor R, et al. The contribution of lysosomotropism to autophagy perturbation. PLoS One. 2013;8(11):e82481.

    PubMed Central  PubMed  Google Scholar 

  201. Darvekar SR, et al. SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1. PLoS One. 2014;9(1):e85262.

    PubMed Central  PubMed  Google Scholar 

  202. Jiang TF, et al. Curcumin ameliorates the neurodegenerative pathology in A53T alpha-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol. 2013;8(1):356–69.

    PubMed  Google Scholar 

  203. Rubinsztein DC, et al. Potential therapeutic applications of autophagy. Nat Rev Drug Discov. 2007;6(4):304–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa A. González-Polo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González-Polo, R., Gómez-Sánchez, R., Pizarro-Estrella, E., Yakhine-Diop, S., Rodríguez-Arribas, M., Fuentes, J. (2015). Control of Autophagy in Parkinson’s Disease. In: Fuentes, J. (eds) Toxicity and Autophagy in Neurodegenerative Disorders. Current Topics in Neurotoxicity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-13939-5_6

Download citation

Publish with us

Policies and ethics