Skip to main content

Access Behavior Prediction in Distributed Storage System Using Regularized Extreme Learning Machine

  • Conference paper
Proceedings of ELM-2014 Volume 2

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 4))

  • 1422 Accesses

Abstract

In this paper, we propose a fast and accurate block-level operation (writing or reading) and transferred size prediction method based on Regularized Extreme Learning Machine, which represents a key component towards sustainable, green data center. The proposed RELM-based method can produce competitive performance at fast learning speed. Benefitting from the random weights of RELM, these two prediction tasks can be unified as one, thus reducing the training time to half. Experiments on SNIA shows that block-level operation type prediction can reach an accuracy of 99.04%, while the transferred size prediction is at 0.0234 NRMSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DCD Intelligence, DCD Industry Census 2013: Data Center Power - Is the data center industry getting better at using power? (2014)

    Google Scholar 

  2. National Environment Agency (NEA), Data Center Energy Efficiency Benchmarking (2012)

    Google Scholar 

  3. Uptime Institute - The Global Data Center Authority, 2013 Data Center Industry Survey (2013)

    Google Scholar 

  4. National Renewable Energy Laboratory, Best Practices Guide for Energy-Efficient Data Center Design (2011)

    Google Scholar 

  5. Data Storage Technology brings Data Center Power Consumption benefits

    Google Scholar 

  6. Understanding the Behaviour of Solid State Disk

    Google Scholar 

  7. SAS and SATA, Solid-State Storage Lower Data Center Power Consumption

    Google Scholar 

  8. Leong, Y.K.: Future of Data Centers: Next Generation NVM and Hybrid Integration, Data Center Technologies Division (2012)

    Google Scholar 

  9. Google is improving its data centers with the power of machine learning

    Google Scholar 

  10. Devarakonda, M.V., Iyer, R.K.: Predictability of process resource usage: a measurement-based study on UNIX. IEEE Trans. Softw. Eng. 15(12), 1579–1586 (1989)

    Article  Google Scholar 

  11. Faerman, M., Su, A., Wolski, R., Berman, F.: Adaptive Performance Prediction for Distributed Data-intensive Applications. In: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, New York, NY, USA (1999)

    Google Scholar 

  12. Wang, M., Au, K., Ailamaki, A., Brockwell, A., Faloutsos, C., Ganger, G.R.: Storage device performance prediction with CART models. In: Proceedings of the IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS 2004), pp. 588–595 (2004)

    Google Scholar 

  13. Senger, L.J., Fernandes de Mello, R., Santana, M.J., Helena, R., Santana, C., Yang, L.T.: An On-Line Approach for Classifying and Extracting Application Behavior on Linux. In: Yang, L.T., Guo, M. (eds.) High-Performance Computing, pp. 381–401. John Wiley & Sons, Inc. (2005)

    Google Scholar 

  14. Senger, L.J., et al.: An Instance-based Learning Approach for Predicting Execution Times of . . . (2004)

    Google Scholar 

  15. Oldfield, R., Kotz, D.: Improving Data Access for Computational Grid Applications. Clust. Comput. 9(1), 79–99 (2006)

    Article  Google Scholar 

  16. Kim, J., Chandra, A., Weissman, J.B.: Using Data Accessibility for Resource Selection in Large-Scale Distributed Systems. IEEE Trans. Parallel Distrib Syst. 20(6), 788–801 (2009)

    Article  Google Scholar 

  17. AL-Mistarihi, H.H.E., Yong, C.H.: On Fairness, Optimizing Replica Selection in Data Grids. IEEE Trans. Parallel Distrib. Syst. 20(8), 1102–1111 (2009)

    Article  Google Scholar 

  18. Ishii, R.P., Fernandes de Mello, R.: An Online Data Access Prediction and Optimization Approach for Distributed Systems. IEEE Trans. Parallel Distrib. Syst. 23(6), 1017–1029 (2012)

    Article  Google Scholar 

  19. Jung, C., Woo, D.-K., Kim, K., Lim, S.-S.: Performance Characterization of Prelinking and Preloadingfor Embedded Systems. In: Proceedings of the 7th ACM & IEEE International Conference on Embedded Software, New York, NY, USA, pp. 213–220 (2007)

    Google Scholar 

  20. Spillane, R.P., Wright, C.P., Sivathanu, G., Zadok, E.: Rapid File System Development Using Ptrace. In: Proceedings of the 2007 Workshop on Experimental Computer Science, New York, NY, USA (2007)

    Google Scholar 

  21. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: Reconstruction Expansion As a Geometry-based Framework for Choosing Proper Delay Times. Phys. D 73(1-2), 82–98 (1994)

    Article  MathSciNet  Google Scholar 

  22. Fraser, A.: Information and entropy in strange attractors. IEEE Trans. Inf. Theory 35(2), 245–262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Abarbanel, H., Brown, R., Sidorowich, J., Tsimring, L.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331–1392 (1993)

    Article  MathSciNet  Google Scholar 

  24. Robinson, J.C.: A topological delay embedding theorem for infinite-dimensional dynamical systems. Nonlinearity 18(5), 2135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated (1990)

    Google Scholar 

  26. Marwan, N., Carmen Romano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5-6), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  27. Ishii, R.P., Rios, R.A., Mello, R.F.: Classification of time series generation processes using experimental tools: a survey and proposal of an automatic and systematic approach. Int. J. Comput. Sci. Eng. 6(4), 217 (2011)

    Article  Google Scholar 

  28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  29. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Yu Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Deng, WY., Su, C.L., Ong, YS. (2015). Access Behavior Prediction in Distributed Storage System Using Regularized Extreme Learning Machine. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, KA. (eds) Proceedings of ELM-2014 Volume 2. Proceedings in Adaptation, Learning and Optimization, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-14066-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14066-7_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14065-0

  • Online ISBN: 978-3-319-14066-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics