Skip to main content

Modified Steam Methane Reformation Methods for Hydrogen Production

  • Chapter
  • First Online:
Clean Hydrogen Production Methods

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 1910 Accesses

Abstract

Over the past few decades, extensive efforts have been made to modify the conventional hydrogen production technologies. In particular, a review of those methods that are intended to reduce the carbon emission and improve the process efficiency for steam methane reformation (SMR) is provided here. So far, several such methods have been proposed based on both fossil and non-fossil energy sources which primarily include the use of membranes, metal oxides as a CO2 sorbent, and nuclear and solar energy. Moreover, this section also includes a brief summary of an innovative process which suggests the inclusion of sodium hydroxide as a reactant to the SMR process. The addition of sodium hydroxide to the SMR process can serve the dual purpose of hydrogen production and CO2 capture. Certainly, these methods have the potential to reduce CO2 emission during hydrogen production. Therefore, here, the status and perspective of all these methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adris AM, Pruden BB, Lim CJ, Grace JR (1996) On the reported attempts to radically improve the performance of steam methane reforming reactor. Candian J Chem Eng 74:177–186. doi:10.1002/cjce.5450740202

    Article  CAS  Google Scholar 

  2. Goetsch DA, Say GR (1989) Synthesis gas preparation and catalyst thereof. US Patent 4,877,550

    Google Scholar 

  3. Minet RG, Tsotsis TT (1991) Catalytic ceramic membrane steam hydrocarbon reformer. US Patent 4,981,676

    Google Scholar 

  4. Paloumbis S, Petersen EE (1982) Coke deposition on a commercial nickel oxide catalyst during the steam reforming of methane. Chem React Eng ACS Symp Ser 38:489–494. doi:10.1021/bk-1982-0196.ch038

    Article  Google Scholar 

  5. Singh CPP, Saraf DN (1979) Simulation of side-fired steam hydrocarbon reformers. Ind Eng Chem Process Des Dev 18:1–7. doi:10.1021/i260069a001

    Article  Google Scholar 

  6. Hyman M (1968) Simulate methane reformer reactions. Hydrog Proc 47:131–137

    CAS  Google Scholar 

  7. Reichel W, Lippert H (1984) Wirbelbett-Reaktorsystem. Deutsches Patentamt No DE. 3331202

    Google Scholar 

  8. Spagnolo DA, Cornett LJ, Chuang KT (1992) Direct electro-steam reforming: a novel catalytic approach. Int J Hydrog Energy 17:839–846. doi:10.1016/0360-3199(92)90033-S

    Article  CAS  Google Scholar 

  9. Goetsch DA, Say GR, Vargas JM, Eberly PE (1989) Synthesis gas preparation and catalyst therefore. US Patent 4,888,131

    Google Scholar 

  10. Guerrieri SA (1970) Steam reforming of hydrocarbons. US Patent 3,524,819

    Google Scholar 

  11. Robinson LF (1980) Reforming of hydrocarbons. US Patent 4,224,298

    Google Scholar 

  12. Suzumura H, Makihara H (1986) Manufacture of hydrogen-containing gas. Japanese Patent JP61186201

    Google Scholar 

  13. Adris AM, Pruden BB, Lim CJ, Grace JR (1996) On the reported attempts to radically improve the performance of the steam methane reforming reactor. Can J Chem Eng 74:177–186. doi:10.1002/cjce.5450740202

    Article  CAS  Google Scholar 

  14. Brun-Tsekhovoi AR, Zadorin AR, Katsobashvili YR, Kourdumov SS (1988) The process of catalytic steam-reforming of hydrocarbons in the presence of carbon dioxide acceptor. In: Hydrogen energy progress VII, proceedings of the 7th world hydrogen energy conference, pp. 885–900

    Google Scholar 

  15. Gupta RB (2009) Hydrogen fuel: production, transport, and storage. CRC Press, Boca Raton, p. 9 (Chapter 1)

    Google Scholar 

  16. LaBar MP (2002) The gas-turbine modular helium reactor: a promising option for near-term deployment. In: Proceedings of international congress on advanced nuclear power plants. Florida

    Google Scholar 

  17. Muradov N (2009) Production of hydrogen from hydrocarbons. In: Gupta R (ed) Hydrogen fuel, production, transport and storage. Boca Raton

    Google Scholar 

  18. Bolat P, Thiel C (2014) Hydrogen supply chain architecture for bottom-up energy systems models. Part 2: techno-economic inputs for hydrogen production pathways. Int J Hydrog Energy 39:8898–8925. doi:10.1016/i.ijhydene.2014.03.170

    Article  CAS  Google Scholar 

  19. Farbman GH (1979) Hydrogen production by the westinghouse sulfur cycle process: program status. Int J Hydrog Energy 4:111–122. doi:10.1016/0360-3199(79)90045-4

    Article  CAS  Google Scholar 

  20. Yildiz B, Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrog Energy 31:77–92. doi:10.1016/i.ijhydene.2005.02.009

    Article  CAS  Google Scholar 

  21. Ohashi H, Inaba Y, Nishihara T, Takeda T, Hayashi K, Takada S, Inagaki Y (2006) Development of control technology for HTTR hydrogen production system with mock-up test facility—system controllability test for loss of chemical reaction. Nucl Eng Des 236:1396–1410. doi:10.1016/j.nucengdes.2006.01.005

    Article  CAS  Google Scholar 

  22. Steinfeld A, Meier A (2004) Solar fuels and materials. Encycl Energy 5:623–637 (Cleveland (ed))

    Article  Google Scholar 

  23. Edwards JH, Do KT, Maitra AM, Schuck S, Fok W, Stein W (1996) The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat. Energy Convers Manage 37:1339–1344. doi:10.1016/0196-8904(95)00343-6

    Article  CAS  Google Scholar 

  24. Jensen J, Poulsen J, Andersen N (2010) From coal to clean energy. Nitrogen + Syngas 310

    Google Scholar 

  25. Aristov YI, Fedoseev VI, Parmon VN (1997) High-density conversion of light energy via direct illumination of catalyst. Int J Hydrog Energy 22:869–874. doi:10.1016/S0360-3199(96)00238-8

    Article  CAS  Google Scholar 

  26. Yokota O, Oku Y, Arakawa M, Hasegawa N, Matsunami J, Kaneko H, Tamaura Y, Kitamura M (2000) Steam reforming of methane using a solar simulator controlled by H2O/CH4 = 1/1. Appl Organomet Chem 14:867–870. doi:10.1002/1099-0739(200012)14:12<867:AID-AOC99>3.0.CO;2-X

    Article  CAS  Google Scholar 

  27. Lau C, Tsolakis A, Wyszynsk ML (2011) Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming. Int J Hydrog Energy 36:397–404. doi:10.1016/j.ijhydene.2010.09.086

    Article  CAS  Google Scholar 

  28. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380. doi:10.1016/j.energy.2006.10.018

    Article  CAS  Google Scholar 

  29. Xie M, Zhou Z, Qi Y, Cheng Z, Yuan W (2012) Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO–Ca9Al6O18 sorbent. Chem Eng J 207–208:142–150. doi:10.1016/j.cej.2012.06.032

  30. Ding Y (2000) Adsorption-enhanced steam-methane reforming. Chem Eng Sci 55:3929–3940. doi:10.1016/S0009-2509(99)00597-7

    Article  CAS  Google Scholar 

  31. Jakobsen HA 2008 Chemical reactor modeling. Multiphase reactive flows. Springer, Berlin. pp 659–677

    Google Scholar 

  32. Balasubramanian B, Ortiz LA, Kaytakoglu S, Harrison DP (1999) Hydrogen from methane in a single-step process. Chem Eng Sci 54:3543–3552. doi:10.1016/S0009-2509(98)00425-4

    Article  CAS  Google Scholar 

  33. Wang Y, Chao Z, Chen D, Jakobsen HA (2011) SE-SMR process performance in CFB reactors: simulation of the CO2 adsorption/desorption processes with CaO based sorbents. Int J Greenhouse Gas Control 5:489–497. doi:10.1016/i.ijggc.2010.09.001

    Article  CAS  Google Scholar 

  34. Solsvik J, Jakobsen HA (2011) A numerical study of a two property catalyst/sorbent pellet design for the sorption-enhanced steam–methane reforming process: modeling complexity and parameter sensitivity study. Chem Eng J 178:407–422. doi:10.1016/j.cej.2011.10.045

    Article  CAS  Google Scholar 

  35. Lindborg H, Jakobsen HA (2009) Sorption enhanced steam methane reforming process performance and bubbling fluidized bed reactor design analysis by use of a two-fluid model. Ind Eng Chem Res 48:1332–1342. doi:10.1021/ie800522p

    Article  CAS  Google Scholar 

  36. Wang J, Wang Y, Jakobsen HA (2014) The modeling of circulating fluidized bed reactors for SE-SMR process and sorbent regeneration. Chem Eng Sci 108:57–65. doi:10.1016/j.ces.2013.12.012

    Article  CAS  Google Scholar 

  37. Yi BK, Harrison DP (2005) Low-pressure sorption-enhanced hydrogen production. Ind Eng Chem Res 44:1665–1669. doi:10.1021/ie048883g

    Article  CAS  Google Scholar 

  38. Johnsen K, Ryu HJ, Grace JR, Lim CJ (2006) Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chem Eng Sci 61:1195–1202. doi:10.1016/j.ces.2005.08.022

    Article  CAS  Google Scholar 

  39. Silaban A, Narcida M, Harrison DP (1996) Characteristics of the reversible reaction between CO2 (g) and calcined dolomite. Chem Eng Comm 146:149–162. doi:10.1080/00986449608936487

    Article  CAS  Google Scholar 

  40. Ochoa-Fernández E, Rusten HK, Jakobsen HA, Ronning M, Holmen A, Chen D (2005) Catal Today 106:41–46. doi:10.1016/j.cattod.2005.07.146

    Article  Google Scholar 

  41. Zhao T, Ochoa-Fernández E, Ronning M, Chen D (2007) Preparation and high-temperature CO2 capture properties of nanocrystalline Na2ZrO3. Chem Mater 19:3294–3301. doi:10.1021/cm062732h

    Article  CAS  Google Scholar 

  42. Essaki K, Muramatsu T, Kato M (2008) Effect of equilibrium shift by using lithium silicate pellets in methane steam reforming. Int J Hydrog Energy 33:4555–4559. doi:10.1016/j.ijhydene.2008.05.063

    Article  CAS  Google Scholar 

  43. Ding Y, Alpay E (2000) Adsorption-enhanced steam-methane reforming. Chem Eng Sci 55:3929–3940. doi:10.1016/S0009-2509(99)00597-7

    Article  CAS  Google Scholar 

  44. Halabi MH, de Croon MHJM, Schaff JVD, Cobden PD, Schouten JC (2012) A novel catalyst–sorbent system for an efficient H2 production with in-situ CO2 capture. Int J Hydrog Energy 37:4987–4996. doi:10.016/j.ijhydene.2011.12.025

    Article  CAS  Google Scholar 

  45. Kumar S (2014) A comparative study of CO2 sorption properties for different oxides. Mater Renew Sus Energy 3:30. doi:10.1007/s40243-014-0030-9

    Article  CAS  Google Scholar 

  46. Ochoa-Fernández E, Haugen G, Zhao T, Ronning M, Aartun I, Borresen B, Rytter E, Ronnekleiv M, Chen D (2007) Process design simulation of H2 production by sorption enhanced steam methane reforming: evaluation of potential CO2 acceptors. Green Chem 9:654–662. doi:10.1039/B614270B

    Article  Google Scholar 

  47. Broda M, Manovic V, Imtiaz Q, Kierzkowska AM, Anthony EJ, Muller CR (2013) Reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst. Environ Sci Technol 47:6007–6014. doi:10.1021/es305113p

    Article  CAS  Google Scholar 

  48. Harrison DP (2008) Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res 47:6486–6501. doi:10.1021/ie800298z

    Article  CAS  Google Scholar 

  49. Anthony EJ (2011) Ca looping technology: current status, developments and future directions. Greenhouse Gas Sci Technol 1:36–47. doi:10.1002/ghg3.2

    Article  CAS  Google Scholar 

  50. Judd MD, Pope MI (1970) Formation and surface properties of electron-emissive coatings V. DTA, ETA and dilatometry studies on some alkaline–earth carbonates. Appl Chem 20:384–388. doi:10.1002/jctb.5010201205

    Article  CAS  Google Scholar 

  51. Manovic V, Anthony EJ (2008) Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environ Sci Technol 42:4170–4174. doi:10.1021/es800152s

    Article  CAS  Google Scholar 

  52. Manovic V, Anthony EJ (2007) Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ Sci Technol 41:1420–1425. doi:10.1021/es0621344

    Article  CAS  Google Scholar 

  53. Materić V, Sheppard C, Smedley SI (2010) Effect of repeated steam hydration reactivation on CaO-based sorbents for CO2 capture. Environ Sci Technol 44:9496–9501. doi:10.1021/es102623k

    Article  Google Scholar 

  54. Kierzkowska AM, Muller CR (2013) Sol–gel-derived, calcium-based, copper-functionalised CO2 sorbents for an integrated chemical looping combustion–calcium looping CO2 capture process. ChemPlusChem 78: 92−100. doi:10.1002/cplu.201200232

  55. Pacciani R, Muller CR, Davidson JF, Dennis JS, Hayhurst AN (2008) How does the concentration of CO2 affect its uptake by a synthetic Ca-based solid sorbent? AIChE J 54:3308–3311. doi:10.1002/aic.11611

    Article  CAS  Google Scholar 

  56. Broda M, Kierzkowska AM, Muller CR (2012) Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents. Environ Sci Technol 46:10849–10856. doi:10.1021/es302757e

    Article  CAS  Google Scholar 

  57. Broda M, Muller CR (2012) Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon gel-templated CO2 sorbents. Adv Mater 24:3059–3064. doi:10.1002/adma.201104787

    Article  CAS  Google Scholar 

  58. Radfarnia HR, Iliuta MC (2012) Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture. Ind Eng Chem Res 51:10390–10398. doi:10.1021/ie301287k

    Article  CAS  Google Scholar 

  59. Filitz R, Kierzkowska AM, Broda M, Muller CR (2012) Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites. Environ Sci Technol 46:559–565. doi:10.1021/es2034697

    Article  CAS  Google Scholar 

  60. Sultan DS, Muller CR, Dennis JS (2010) Capture of CO2 using sorbents of calcium magnesium acetate (CMA). Energy Fuels 24:3687–3697. doi:10.1021/ef100072q

    Article  CAS  Google Scholar 

  61. Chanburanasiri N, Ribeiro AM, Rodrigues AE, Arpornwichanop A, Laosiripojana N, Praserthdam P, Assabumrungrat S (2011) Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst. Ind Eng Chem Res 50:13662–13671. doi:10.1021/ie201226j

    Article  CAS  Google Scholar 

  62. Li Y, Zhao C, Chen H, Duan L, Chen X (2010) Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent. Fuel 89:642–649. doi:10.1016/j.fuel.2009.08.041

    Article  CAS  Google Scholar 

  63. Wu SF, Zhu YQ (2010) Behavior of CaTiO3/Nano-CaO as a CO2 reactive adsorbent. Ind Eng Chem Res 49:2701–2706. doi:10.1021/ie900900r

    Article  CAS  Google Scholar 

  64. Li ZS, Cai N, Huang Y, Han H (2005) Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent. Energy Fuels 19:1447–1452. doi:10.1021/ef0496799

    Article  CAS  Google Scholar 

  65. Martzavaltzi CS, Lemonidou AA (2008) Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous Mesoporous Mater 110:119–127. doi:10.1016/j.micromeso.2007.10.006

    Article  Google Scholar 

  66. Barelli L, Bidini G, Michele A, Gallorini F, Petrillo C, Sacchetti F (2014) Synthesis and test of sorbents based on calcium aluminates for SE-SR. Appl Energy 127:81–92. doi:10.1016/j.apenergy.2014.04.034

    Article  CAS  Google Scholar 

  67. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854. doi:10.1002/cssc.200900036

    Article  CAS  Google Scholar 

  68. Wang Q, Luo J, Zhong Z, Borqna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55. doi:10.1039/C0EE00064G

    Article  CAS  Google Scholar 

  69. Drage TC, Snape CE, Stevens LA, Wood J, Wang J, Cooper AI (2012) Materials challenges for the development of solid sorbents for post-combustion carbon capture. J Mater Chem 22:2815–2823. doi:10.1039/C2JM12592G

    Article  CAS  Google Scholar 

  70. Ebner AD, Reynolds SP, Ritter JA (2007) Nonequilibrium kinetic model that describes the reversible adsorption and desorption behavior of CO2 in a K-promoted hydrotalcite-like compound. Ind Eng Chem Res 46:1737–1744. doi:10.1021/ie061042k

    Article  CAS  Google Scholar 

  71. Reddy MK, Xu ZP, Lu M, Diniz da Costa JC (2008) Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Ind Eng Chem Res 47:2630–2635. doi:10.1021/ie0716060

  72. Ishida M, Jin H (1994) A new advanced power-generation system using chemical-looping combustion. Energy 19:415–422. doi:10.1016/0360-5442(94)90120-1

    Article  CAS  Google Scholar 

  73. Anheden A, Svedberg G (1998) Exergy analysis of chemical-looping combustion systems. Energy Convers Manage 39:1967–1980. doi:10.1016/S0196-8904(98)00052-1

    Article  CAS  Google Scholar 

  74. Gnanapragasam NV, Reddy BV, Rosen MA (2009) Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: assessment of system operation and resource requirements. Int J Hydrog Energy 34:2606–2615. doi:10.1016/j.ijhydene.2009.01.036

    Article  CAS  Google Scholar 

  75. Ramkumar S, Fan LS (2010) Calcium looping process (CLP) for enhanced noncatalytic hydrogen production with integrated carbon dioxide capture. Energy Fuel 24:4408–4418. doi:10.1021/ef100346j

    Article  CAS  Google Scholar 

  76. Corbella BM, de Diego LF, Garcia-Labiano F, Adanez J, Palacios JM (2006) Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane in multicycle tests. Ind Eng Chem Res 45:157–165. doi:10.1021/ie050756c

    Article  CAS  Google Scholar 

  77. Murugan A, Thursfield A, Metcalfe AS (2011) A chemical looping process for hydrogen production using iron-containing perovskites. Energy Env Sci 4:4639–4649. doi:10.1039/C1EE02142G

    Article  CAS  Google Scholar 

  78. Dueso C, Garca-Labiano F, Adnez J, de Diego L, Gayn P, Abad A (2009) Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Fuel 88:2357–2364. doi:10.1016/j.fuel.2008.11.026

    Article  CAS  Google Scholar 

  79. Kolbitsch P, Pröll T, Bolhar-Nordenkampf J, Hofbauer H (2009) Design of a chemical looping combustor using a dual circulating fluidized bed (DCFB) reactor system. Chem Eng Technol 32:398–403. doi:10.1002/ceat.200800378

    Article  CAS  Google Scholar 

  80. Ishida M, Jin H, Okamoto T (1998) Kinetic behavior of solid particle in chemical-looping combustion: suppressing carbon deposition in reduction. Energy Fuel 12:223–229. doi:10.1021/ef970041p

    Article  CAS  Google Scholar 

  81. Erri P, Varma A (2007) Spinel-supported oxygen carriers for inherent CO2 separation during power generation. Ind Eng Chem Res 46:8597–8601. doi:10.1021/ie070068o

    Article  CAS  Google Scholar 

  82. Ryden M, Lyngfelt A (2006) Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrog Energy 31:1271–1283. doi:10.1016/j.ijhydene.2005.12.003

    Article  CAS  Google Scholar 

  83. Gayan P, Dueso C, Abad A, Adanez J, Diego L, Garcia-Labiano F (2009) NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition–precipitation methods. Fuel 88:1016–1023. doi:10.1016/j.fuel.2008.12.007

    Article  CAS  Google Scholar 

  84. Corbella BM, de Diego LF, García-Labiano F, Adánez J, Palacios JM (2005) Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Environ Sci Technol 39:5796–5803. doi:10.1021/es048015a

    Article  CAS  Google Scholar 

  85. Saha C, Roy B, Bhattacharya S (2011) Chemical looping combustion of Victorian brown coal using NiO oxygen carrier. Int J Hydrog Energy 36:3253–3259. doi:10.1016/j.ijhydene.2010.11.119

    Article  CAS  Google Scholar 

  86. Mattisson T, Johansson M, Lyngfelt A (2006) The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel 85:736–747. doi:10.1016/j.fuel.2005.07.021

    Article  CAS  Google Scholar 

  87. Mattisson T, Lyngfelt A, Cho P (2001) The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel 80:1953–1962. doi:10.1016/S0016-2361(01)00051-5

    Article  CAS  Google Scholar 

  88. Abad A, Mattisson T, Lyngfelt A, Johansson M (2007) The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel 86:1021–1035. doi:10.1016/j.fuel.2006.09.021

    Article  CAS  Google Scholar 

  89. Cho P, Mattisson T, Lyngfelt A (2005) Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Ind Eng Chem Res 44:668–676. doi:10.1021/ie049420d

    Article  CAS  Google Scholar 

  90. Wang B, Gao C, Wang W, Zheng C (2011) Chemical looping combustion of coal with CuO-Fe mechanically mixed oxygen carrier. Proc Eng 16:48–53. doi:10.1016/j.proeng.2011.08.1050

    Article  Google Scholar 

  91. Ortiz M, Gayán P, de Diego LF, García-Labiano F, Abad A, Pans MA, Adánez J (2011) Hydrogen production with CO2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas. J Power sources 196:4370–4381. doi:10.1016/j.jpowsour.2010.09.101

  92. Cho W, Seo M, Kim S, Kang K, Bae K, Kim C, Jeong S, Park C (2012) Reactivity of iron oxide as an oxygen carrier for chemical-looping hydrogen production. Int J Hydrog Energy 37:16852–16863. doi:10.1016/j.ijhydene.2012.08.020

    Article  CAS  Google Scholar 

  93. Zhu X, Wei Y, Wang H, Li K (2013) Ce–Fe oxygen carriers for chemical-looping steam methane reforming. Int J Hydrog Energy 38:4492–4501. doi:10.1016/j.ijhydene.2013.01.115

    Article  CAS  Google Scholar 

  94. Corbella Beatríz M, Palacios José María (2007) Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane. Fuel 86:113–122. doi:10.1016/j.fuel.2006.05.026

    Article  CAS  Google Scholar 

  95. Wang C, Zhao H, Zheng Y, Liu Z, Yan R, Zheng C (2012) Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers. Fuel Process Technol 96:104–115. doi:10.1016/j.fuproc.2011.12.030

    Article  CAS  Google Scholar 

  96. de Diego LF, Garcı́a-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, Palacios JM (2004) Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 83:1749–1757. doi:10.1016/j.fuel.2004.03.003

  97. Saha C, Bhattacharya S (2011) Comparison of CuO and NiO as oxygen carrier in chemical looping combustion of a Victorian brown coal. Int J Hydrog Energy 36:12048–12057. doi:10.1016/j.ijhydene.2011.06.065

    Article  CAS  Google Scholar 

  98. Zheng X, Su Q, Mi W, Zhang P (2014) Effect of steam reforming on methane-fueled chemical looping combustion with Cu-based oxygen carrier. Int J Hydrog Energy 39:9158–9168. doi:10.1016/j.ijhydene.2014.03.245

    Article  CAS  Google Scholar 

  99. Abad A, Mattisson T, Lyngfelt A, Rydén M (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85:1174–1185. doi:10.1016/j.fuel.2005.11.014

    Article  CAS  Google Scholar 

  100. Zafar Q, Abad A, Mattisson T, Gevert B, Strand M (2007) Reduction and oxidation kinetics of Mn3O4/Mg–ZrO2 oxygen carrier particles for chemical-looping combustion. Chem Eng Sci 62:6556–6567. doi:10.1016/j.ces.2007.07.011

    Article  CAS  Google Scholar 

  101. Hossain MM, Sedor KE, de Lasa HI (2007) Co–Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: desorption kinetics and metal–support interaction. Chem Eng Sci 62:5464–5472. doi:10.1016/j.ces.2006.12.066

    Article  CAS  Google Scholar 

  102. Tian H, Guo Q, Chang J (2008) Investigation into decomposition behavior of CaSO4 in chemical-looping combustion. Energy Fuel 22:3915–3921. doi:10.1021/ef800508w

    Article  CAS  Google Scholar 

  103. Song Q, Xiao R, Deng Z, Zheng W, Shen L, Xiao J (2008) Multicycle Study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor. Energy Fuel 22:3661–3672. doi:10.1021/ef800275a

    Article  CAS  Google Scholar 

  104. Bhavsar S, Tackett B, Veser G (2014) Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen carriers for chemical looping combustions. Fuel 136:268–279. doi:10.1016/j.fuel.2014.07.068

    Article  CAS  Google Scholar 

  105. Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z (2014) Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane. Int J Hydrog Energy 39:3243–3252. doi:10.1016/j.ijhydene.2013.12.046

    Article  CAS  Google Scholar 

  106. Murugan A (2011) Iron-containing perovskite materials for stable hydrogen production by chemical looping water splitting. New Castle University, UK

    Google Scholar 

  107. Roses L, Gallucci F, Manzolini G, Annaland MS (2013) Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chem Eng J 222:307–320. doi:10.1016/j.cej.2013.02.069

    Article  CAS  Google Scholar 

  108. Xie D, Yu J, Wang F, Zhang N, Wang W, Yu H, Peng F, Park AA (2011) Hydrogen permeability of Pd–Ag membrane modules with porous stainless steel substrates. Int J Hydrog Energy 36:1014–1026. doi:10.1016/j.ijhydene.2010.10.030

    Article  CAS  Google Scholar 

  109. Chen WH, Syu WZ, Hung CI, Lin YL, Yang CC (2012) A numerical approach of conjugate hydrogen permeation and polarization in a Pd membrane tube. Int J Hydrog Energy 37:12666–12679. doi:10.1016/j.ijhydene.2012.05.128

    Article  CAS  Google Scholar 

  110. Ledjeff-Hey K, Formanski V, Kalk Th, Roes J (1998) Compact hydrogen production systems for solid polymer fuel cells. J Power Sources 71:199–207. doi:10.1016/S0378-7753(97)02760-2

    Article  CAS  Google Scholar 

  111. Damle S (2001) Recovery of carbon dioxide in advanced fossil fuel conversion processes using a membrane reactor. In: First National Conference on Carbon Sequestration. Washington

    Google Scholar 

  112. Hou K, Hughes R (2002) The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. J Membr Sci 206:119–130. doi:10.1016/S0376-7388(01)00770-0

    Article  CAS  Google Scholar 

  113. Bus E (2002) Poisoning of Palladium membranes during separation of hydrogen from CPO-WGS product streams. Utrecht University

    Google Scholar 

  114. Saxena S, Kumar S, Drozd V (2011) A modified steam-methane-reformation reaction for hydrogen production. Int J Hydrog Energy 36:4366–4369. doi:10.1016/j.ijhydene.2010.12.133

    Article  CAS  Google Scholar 

  115. Kumar S, Drozd V, Saxena S (2012) A modified method for production of hydrogen from methane. Int J Energy Res 36:1133–1138. doi:10.1002/er.1854

    Article  CAS  Google Scholar 

  116. Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140:310–318. doi:10.1016/j.combustflame.2004.10.010

    Article  CAS  Google Scholar 

  117. Cashdollar KL (2000) Overview of dust explosibility characteristics. J Loss Prev Process Ind 13:183–199. doi:10.1016/S0950-4230 (99)00039-X

  118. Lee GG, Hashimoto H, Watanabe R (1995) Development of particle morphology during dry ball milling of Cu powder. Mater Trans 36:548–554

    Article  CAS  Google Scholar 

  119. Cho DG, Yang SK, Lee JS, Lee CS (2011) Investigation of mechanical properties and elongated Ni grain growth in an Al2O3-Ni composite during low-energy ball milling. Mater Trans 52:2131–2136

    Article  CAS  Google Scholar 

  120. Kumar S (2013) Clean hydrogen production and carbon dioxide capture methods. FIU Electronic Theses and Dissertations. Paper 1039 http://digitalcommons.fiu.edu/etd/1039

  121. Ishida M, Toida M, Shimizu T, Takenaka S, Otsuka K (2004) Formation of hydrogen without CO x from carbon, water, and alkali hydroxide. Ind Eng Chem Res 43:7204–7206. doi:10.1021/ie049360b

    Article  CAS  Google Scholar 

  122. Kamo T, Takaoka K, Otomo J, Takahashi H (2006) J Mater Cycles Waste Manage 8:109–115. doi:10.1007/s10163-006-0152-y

    Article  CAS  Google Scholar 

  123. Eurochlor report 1997. http://www.eurochlor.org/

  124. http://www.icis.com/Articles/2009/12/30/9321358/OUTLOOK-10-US-chlor-alkali-on-a-tightrope.html

  125. Dennis S, Kostick D (1998) Soda Ash US Geological Survey, Mineral Commodity Summaries. http://minerals.usgs.gov/minerals/pubs/commodity/soda_ash/610398.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Kumar, S. (2015). Modified Steam Methane Reformation Methods for Hydrogen Production. In: Clean Hydrogen Production Methods. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-14087-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14087-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14086-5

  • Online ISBN: 978-3-319-14087-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics