Skip to main content

PARP Inhibitor Resistance—What Is Beyond BRCA1 or BRCA2 Restoration?

  • Chapter
  • First Online:
PARP Inhibitors for Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

  • 1748 Accesses

Abstract

Nearly 10 years ago the usefulness of poly(ADP-ribose) polymerase (PARP) inhibitors to kill BRCA1 or BRCA2-deficient cells was reported, and this finding has served as a prime example of the concept of synthetic lethality in the context of anticancer therapy. The clinical translation of this finding has undergone several ups and downs, however. Despite spectacular responses seen in some patients with BRCA-deficient breast or ovarian cancers, other patients did not show the expected benefit from PARP inhibitor therapy. Thus, like for all novel tailored anti-cancer drugs, upfront and secondary resistance remain major hurdles in the implementation of the initial preclinical finding. We know at least one clinically relevant mechanism of PARP inhibitor resistance: the reversion of BRCA function by secondary mutations. Nevertheless, it is also clear that this mechanism does not explain all cases of resistance. At the moment, we only have a poor understanding of BRCA reversion-independent resistance mechanisms. Preclinical data have pointed in several directions, e.g. increased drug efflux, reduced drug target levels, or alternative DNA repair. Here, we discuss these mechanisms with a focus on potential DNA repair adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amiri-Kordestani L, Basseville A, Kurdziel K, Fojo AT, Bates SE (2012) Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist Updat: Rev Comment Antimicrob Anticancer Chemother 15:50–61. doi:10.1016/j.drup.2012.02.002

    CAS  Google Scholar 

  2. Ang JE, Gourley C, Powell CB, High H, Shapira-Frommer R, Castonguay V, De Greve J, Atkinson T, Yap TA, Sandhu S, Banerjee S, Chen L-M, Friedlander ML, Kaufman B, Oza AM, Matulonis U, Barber LJ, Kozarewa I, Fenwick K, Assiotis I, Campbell J, Chen L, de Bono JS, Gore ME, Lord CJ, Ashworth A, Kaye SB (2013) Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. Clin Cancer Res Off J Am Assoc Cancer Res 19:5485–5493. doi:10.1158/1078-0432.CCR-13-1262

    CAS  Google Scholar 

  3. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    CAS  PubMed  Google Scholar 

  4. Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, Assiotis I, Rodrigues DN, Reis Filho JS, Moreno V, Mateo J, Molife LR, De Bono J, Kaye S, Lord CJ, Ashworth A (2013) Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol 229:422–429. doi:10.1002/path.4140

    CAS  PubMed  Google Scholar 

  5. Benjamin RC, Gill DM (1980) ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J Biol Chem 255:10493–10501

    CAS  PubMed  Google Scholar 

  6. Berns K, Bernards R (2012) Understanding resistance to targeted cancer drugs through loss of function genetic screens. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 15:268–275

    CAS  Google Scholar 

  7. Bock C, Lengauer T (2012) Managing drug resistance in cancer: lessons from HIV therapy. Nat Rev 12:494–501

    CAS  Google Scholar 

  8. Borst P (2012) Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol 2(5):120066

    PubMed Central  PubMed  Google Scholar 

  9. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, Haffty BG, Tommiska J, Blomqvist C, Drapkin R, Adams DJ, Nevanlinna H, Bartek J, Tarsounas M, Ganesan S, Jonkers J (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17:688–695. doi:10.1038/nsmb.1831

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bouwman P, van der Gulden H, van der Heijden I, Drost R, Klijn CN, Prasetyanti P, Pieterse M, Wientjens E, Seibler J, Hogervorst FBL, Jonkers J (2013) A high-throughput functional complementation assay for classification of BRCA1 missense variants. Cancer Disco 3:1142–1155. doi:10.1158/2159-8290.CD-13-0094

    CAS  Google Scholar 

  11. Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91:1310–1316

    Google Scholar 

  12. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    CAS  PubMed  Google Scholar 

  13. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bunting SF, Callen E, Kozak ML, Kim JM, Wong N, Lopez-Contreras AJ, Ludwig T, Baer R, Faryabi RB, Malhowski A, Chen HT, Fernandez-Capetillo O, D’Andrea A, Nussenzweig A (2012) BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell 46:125–135

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM, Wesemann DR, Lee JE, Tubbs A, Sleckman BP, Daniel JA, Ge K, Alt FW, Fernandez-Capetillo O, Nussenzweig MC, Nussenzweig A (2013) 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153(6):1266–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615. doi:10.1038/nature10166

    Google Scholar 

  17. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. doi:10.1038/nature11412

    Google Scholar 

  18. Cardnell RJ, Feng Y, Diao L, Fan Y-H, Masrorpour F, Wang J, Shen Y, Mills GB, Minna JD, Heymach JV, Byers LA (2013) Proteomic markers of DNA repair and PI3 K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 19:6322–6328. doi:10.1158/1078-0432.CCR-13-1975

    CAS  Google Scholar 

  19. Chapman JR, Barral P, Vannier J-B, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49:858–871. doi:10.1016/j.molcel.2013.01.002

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chappuis PO, Goffin J, Wong N, Perret C, Ghadirian P, Tonin PN, Foulkes WD (2002) A significant response to neoadjuvant chemotherapy in BRCA1/2 related breast cancer. J Med Genet 39:608–610

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. doi:10.1016/j.molcel.2010.09.019

    CAS  PubMed Central  PubMed  Google Scholar 

  22. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(2):249–268

    PubMed Central  PubMed  Google Scholar 

  23. Da Silva L, Lakhani SR (2010) Pathology of hereditary breast cancer. Mod Pathol 23(Suppl 2):46–51

    Google Scholar 

  24. Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G, Oliver J, Rolli V, Ménissier-de Murcia J, de Murcia G (1999) Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81:69–75

    CAS  PubMed  Google Scholar 

  25. De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol 3:228. doi:10.3389/fonc.2013.00228

    PubMed Central  PubMed  Google Scholar 

  26. De Murcia G, Ménissier-de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176

    CAS  PubMed  Google Scholar 

  27. De Palma M, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6:111–127

    PubMed  Google Scholar 

  28. De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84:137–146. doi:10.1016/j.bcp.2012.03.018

    CAS  PubMed  Google Scholar 

  29. Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M, Gitlin AD, Feldhahn N, Resch W, Oliveira TY, Chait BT, Nussenzweig A, Casellas R, Robbiani DF, Nussenzweig MC (2013) Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339:711–715. doi:10.1126/science.1230624

    CAS  PubMed  Google Scholar 

  30. Drost R, Jonkers J (2013) Opportunities and hurdles in the treatment of BRCA1-related breast cancer. Oncogene. doi:10.1038/onc.2013.329

    Google Scholar 

  31. Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, Klijn C, Van der Heijden I, van der Gulden H, Wientjens E, Pieterse M, Catteau A, Green P, Solomon E, Morris JR, Jonkers J (2011) BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20:797–809

    CAS  PubMed  Google Scholar 

  32. Dubach JM, Vinegoni C, Mazitschek R, Fumene Feruglio P, Cameron LA, Weissleder R (2014) In vivo imaging of specific drug-target binding at subcellular resolution. Nat Commun 5:3946. doi:10.1038/ncomms4946

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115

    CAS  PubMed  Google Scholar 

  34. Ellis MJ, Perou CM (2013) The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 3:27–34

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JTF, Tkác J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49:872–883. doi:10.1016/j.molcel.2013.01.001

    PubMed  Google Scholar 

  36. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569

    CAS  PubMed  Google Scholar 

  37. Evers B, Helleday T, Jonkers J (2010) Targeting homologous recombination repair defects in cancer. Trends Pharmacol Sci 31:372–380

    CAS  PubMed  Google Scholar 

  38. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NMB, Jackson SP, Smith GCM, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921. doi:10.1038/nature03445

    CAS  PubMed  Google Scholar 

  39. Feng L, Fong K-W, Wang J, Wang W, Chen J (2013) RIF1 counteracts BRCA1-mediated end resection during DNA repair. J Biol Chem 288:11135–11143. doi:10.1074/jbc.M113.457440

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    CAS  PubMed  Google Scholar 

  41. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, A’Hern R, Tutt A, Ashworth A, Stone J, Carmichael J, Schellens JH, de Bono JS, Kaye SB (2010) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28:2512–2519

    CAS  PubMed  Google Scholar 

  42. Gagné J-P, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon K-M, Foster LJ, Poirier GG (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40:7788–7805. doi:10.1093/nar/gks486

    PubMed Central  PubMed  Google Scholar 

  43. Gan GN, Wittschieben JP, Wittschieben BØ, Wood RD (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 18:174–183. doi:10.1038/cr.2007.117

    CAS  PubMed  Google Scholar 

  44. Garber K (2013) PARP inhibitors bounce back. Nat Rev Drug Discov 12:725–727. doi:10.1038/nrd4147

    CAS  PubMed  Google Scholar 

  45. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, Yerushalmi R, Macpherson E, Carmichael J, Oza A (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12:852–861. doi:10.1016/S1470-2045(11)70214-5

    CAS  PubMed  Google Scholar 

  46. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    CAS  PubMed  Google Scholar 

  47. Gupta SK, Mladek AC, Carlson BL, Boakye-Agyeman F, Bakken KK, Kizilbash S, Schroeder MA, Reid JM, Sarkaria JN (2014) Discordant in vitro and in vivo chemo-potentiating effects of the PARP inhibitor veliparib in temozolomide-sensitive versus -resistant glioblastoma multiforme xenografts. Clin Cancer Res Off J Am Assoc Cancer Res. doi:10.1158/1078-0432.CCR-13-3446

    Google Scholar 

  48. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci J Virtual Libr 13:3046–3082

    CAS  Google Scholar 

  49. Hassler M, Ladurner AG (2012) Towards a structural understanding of PARP1 activation and related signalling ADP-ribosyl-transferases. Curr Opin Struct Biol 22:721–729. doi:10.1016/j.sbi.2012.08.005

    CAS  PubMed  Google Scholar 

  50. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5:387–393. doi:10.1016/j.molonc.2011.07.001

    CAS  PubMed  Google Scholar 

  51. Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V, Zhao GY, Saberi A, Masutani M, Adachi N, Koyama H, de Murcia G, Takeda S (2006) PARP-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 25:1305–1314. doi:10.1038/sj.emboj.7601015

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Huff LM, Lee JS, Robey RW, Fojo T (2006) Characterization of gene rearrangements leading to activation of MDR-1. J Biol Chem 281:36501–36509

    CAS  PubMed  Google Scholar 

  53. Iglehart JD, Silver DP (2009) Synthetic lethality-a new direction in cancer-drug development. N Engl J Med 361:189–191. doi:10.1056/NEJMe0903044

    CAS  PubMed  Google Scholar 

  54. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Jaspers JE, Kersbergen A, Boon U, Sol W, Van Deemter L, Zander SA, Drost R, Wientjens E, Ji J, Aly A, Doroshow JH, Cranston A, Martin NM, Lau A, O’Connor MJ, Ganesan S, Borst P, Jonkers J, Rottenberg S (2013) Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3:68–81

    CAS  PubMed  Google Scholar 

  56. Jaspers JE, Sol W, Kersbergen A, Schlicker A, Guyader C, Xu G, Wessels L, Borst P, Jonkers J, Rottenberg S (2014) BRCA2-deficient sarcomatoid mammary tumors exhibit multi-drug resistance.Cancer Res pii:canres.0839.2014. [Epub ahead of print]

    Google Scholar 

  57. Jensen RB, Ozes A, Kim T, Estep A, Kowalczykowski SC (2013) BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst) 12:306–311. doi:10.1016/j.dnarep.2012.12.007

    CAS  Google Scholar 

  58. Johnson N, Johnson SF, Yao W, Li Y-C, Choi Y-E, Bernhardy AJ, Wang Y, Capelletti M, Sarosiek KA, Moreau LA, Chowdhury D, Wickramanayake A, Harrell MI, Liu JF, D’Andrea AD, Miron A, Swisher EM, Shapiro GI (2013) Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc Natl Acad Sci U S A 110:17041–17046. doi:10.1073/pnas.1305170110

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425. doi:10.1038/ng747

    CAS  PubMed  Google Scholar 

  60. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, Nardella C, Pandolfi PP, Baselga J, Scully R, Asara JM, Cantley LC, Wulf GM (2012) Combining a PI3 K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2:1048–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kedar PS, Stefanick DF, Horton JK, Wilson SH (2012) Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts. Mol Cancer Res MCR 10:360–368. doi:10.1158/1541-7786.MCR-11-0477

    CAS  Google Scholar 

  62. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    CAS  PubMed  Google Scholar 

  63. Langelier M-F, Pascal JM (2013) PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol 23:134–143. doi:10.1016/j.sbi.2013.01.003

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lawlor D, Martin P, Busschots S, Thery J, O’Leary JJ, Hennessy BT, Stordal B (2014) PARP Inhibitors as P-glyoprotein substrates. J Pharm Sci 103:1913–1920. doi:10.1002/jps.23952

    CAS  PubMed  Google Scholar 

  65. Li M, Yu X (2013) Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23:693–704. doi:10.1016/j.ccr.2013.03.025

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lin F, de Gooijer MC, Roig EM, Buil LCM, Christner SM, Beumer JH, Würdinger T, Beijnen JH, van Tellingen O (2014) ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res Off J Am Assoc Cancer Res 20:2703–2713. doi:10.1158/1078-0432.CCR-14-0084

    CAS  Google Scholar 

  67. Lips EH, Mulder L, Hannemann J, Laddach N, Vrancken Peeters MTFD, van de Vijver MJ, Wesseling J, Nederlof PM, Rodenhuis S (2011) Indicators of homologous recombination deficiency in breast cancer and association with response to neoadjuvant chemotherapy. Ann Oncol Off J Eur Soc Med Oncol ESMO 22:870–876. doi:10.1093/annonc/mdq468

    CAS  Google Scholar 

  68. Lips EH, Mulder L, Oonk A, van der Kolk LE, Hogervorst FBL, Imholz ALT, Wesseling J, Rodenhuis S, Nederlof PM (2013) Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer 108:2172–2177. doi:10.1038/bjc.2013.144

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Listovsky T, Sale JE (2013) Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset. J Cell Biol 203:87–100. doi:10.1083/jcb.201302060

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LFA, Peterse JL, Berns A, Jonkers J (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci U S A 104:12111–12116. doi:10.1073/pnas.0702969104

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294. doi:10.1038/nature10760

    CAS  PubMed  Google Scholar 

  72. Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19:1381–1388. doi:10.1038/nm.3369

    CAS  PubMed  Google Scholar 

  73. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26:417–432. doi:10.1101/gad.183509.111

    PubMed Central  PubMed  Google Scholar 

  74. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GCM, Ashworth A (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115. doi:10.1158/0008-5472.CAN-06-0140

    CAS  PubMed  Google Scholar 

  75. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim J-S, Waldman T, Lord CJ, Ashworth A (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1:315–322. doi:10.1002/emmm.200900041

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    CAS  PubMed  Google Scholar 

  77. Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD (2011) The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol 31:2462–2469. doi:10.1128/MCB.05058-11

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Murai J, Huang S-YN, Renaud A, Zhang Y, Ji J, Takeda S, Morris J, Teicher B, Doroshow JH, Pommier Y (2014) Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 13:433–443. doi:10.1158/1535-7163.MCT-13-0803

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, Karlan BY, Taniguchi T, Swisher EM (2011) Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol Off J Am Soc Clin Oncol 29:3008–3015. doi:10.1200/JCO.2010.34.2980

    CAS  Google Scholar 

  81. Oplustilova L, Wolanin K, Mistrik M, Korinkova G, Simkova D, Bouchal J, Lenobel R, Bartkova J, Lau A, O’Connor MJ, Lukas J, Bartek J (2012) Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle 11:3837–3850. doi:10.4161/cc.22026

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Paddock MN, Bauman AT, Higdon R, Kolker E, Takeda S, Scharenberg AM (2011) Competition between PARP-1 and Ku70 control the decision between high-fidelity and mutagenic DNA repair. DNA Repair (Amst) 10:338–343. doi:10.1016/j.dnarep.2010.12.005

    CAS  Google Scholar 

  83. Pajic M, Iyer JK, Kersbergen A, Van der Burg E, Nygren AO, Jonkers J, Borst P, Rottenberg S (2009) Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Res 69:6396–6404

    CAS  PubMed  Google Scholar 

  84. Park J, Long DT, Lee KY, Abbas T, Shibata E, Negishi M, Luo Y, Schimenti JC, Gambus A, Walter JC, Dutta A (2013) The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 33:1632–1644. doi:10.1128/MCB.01503-12

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A 108:3406–3411. doi:10.1073/pnas.1013715108

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH (2012a) Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin Cancer Res Off J Am Assoc Cancer Res 18:1655–1662. doi:10.1158/1078-0432.CCR-11-2890

    CAS  Google Scholar 

  87. Patel AG, Flatten KS, Schneider PA, Dai NT, McDonald JS, Poirier GG, Kaufmann SH (2012b) Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J Biol Chem 287:4198–4210. doi:10.1074/jbc.M111.296475

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Peng G, Chun-Jen Lin C, Mo W, Dai H, Park Y-Y, Kim SM, Peng Y, Mo Q, Siwko S, Hu R, Lee J-S, Hennessy B, Hanash S, Mills GB, Lin S-Y (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5:3361. doi:10.1038/ncomms4361

    PubMed Central  PubMed  Google Scholar 

  89. Pennington KP, Wickramanayake A, Norquist BM, Pennil CC, Garcia RL, Agnew KJ, Taniguchi T, Welcsh P, Swisher EM (2013) 53BP1 expression in sporadic and inherited ovarian carcinoma: relationship to genetic status and clinical outcomes. Gynecol Oncol 128:493–499. doi:10.1016/j.ygyno.2012.12.007

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F, Kozarewa I, Fenwick K, Assiotis I, Chen L, Campbell J, Lord CJ, Ashworth A (2013) A genetic screen using the PiggyBac transposon in haploid cells identifies PARP1 as a mediator of olaparib toxicity. PloS ONE 8:e61520. doi:10.1371/journal.pone.0061520

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Qing Y, Yamazoe M, Hirota K, Dejsuphong D, Sakai W, Yamamoto KN, Bishop DK, Wu X, Takeda S (2011) The epistatic relationship between BRCA2 and the other RAD51 mediators in homologous recombination. PLoS Genet 7:e1002148. doi:10.1371/journal.pgen.1002148

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW (2000) Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 21:1761–1765

    CAS  PubMed  Google Scholar 

  93. Rottenberg S, Jaspers JE, Kersbergen A, Van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, Boulter R, Cranston A, O’Connor MJ, Martin NM, Borst P, Jonkers J (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105:17079–17084

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC, Kersbergen A, Zander SA, Pajic M, Jaspers JE, Jonkers M, Loden M, Sol W, Van der Burg E, Wesseling J, Gillet JP, Gottesman MM, Gribnau J, Wessels L, Linn SC, Jonkers J, Borst P (2012) Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 72:2350–2361

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301. doi:10.1038/nrc2812

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451:1116–1120

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Sasanuma H, Tawaramoto MS, Lao JP, Hosaka H, Sanda E, Suzuki M, Yamashita E, Hunter N, Shinohara M, Nakagawa A, Shinohara A (2013) A new protein complex promoting the assembly of Rad51 filaments. Nat Commun 4:1676. doi:10.1038/ncomms2678

    PubMed Central  PubMed  Google Scholar 

  98. Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–358. doi:10.1038/356356a0

    CAS  PubMed  Google Scholar 

  99. Schmidt C (2012) PARP inhibitors refocus for rebound. Cancer Discov 2:659

    PubMed  Google Scholar 

  100. Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin C-S, deRooij DG, Hirsch S, Ravi K, Hicks JB, Szabolcs M, Jasin M, Baer R, Ludwig T (2011) BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 334:525–528. doi:10.1126/science.1209909

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–170. doi:10.1016/j.cell.2006.11.042

    CAS  PubMed  Google Scholar 

  102. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res Off J Am Assoc Cancer Res 19:5003–5015. doi:10.1158/1078-0432.CCR-13-1391

    CAS  Google Scholar 

  103. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28:1145–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Ström CE, Johansson F, Uhlén M, Szigyarto CA-K, Erixon K, Helleday T (2011) Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res 39:3166–3175. doi:10.1093/nar/gkq1241

    PubMed Central  PubMed  Google Scholar 

  105. Sun C-K, Zhang F, Xiang T, Chen Q, Pandita TK, Huang Y, Hu MCT, Yang Q (2014) Phosphorylation of ribosomal protein S6 confers PARP inhibitor resistance in BRCA1-deficient cancers. Oncotarget 5:3375–3385

    PubMed Central  PubMed  Google Scholar 

  106. Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T (2008) Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res 68:2581–2586

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Thompson D, Easton DF, Breast Cancer Linkage Consortium (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94:1358–1365

    CAS  PubMed  Google Scholar 

  108. Thurber GM, Yang KS, Reiner T, Kohler RH, Sorger P, Mitchison T, Weissleder R (2013) Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat Commun 4:1504. doi:10.1038/ncomms2506

    PubMed Central  PubMed  Google Scholar 

  109. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    CAS  PubMed  Google Scholar 

  110. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34:6170–6182. doi:10.1093/nar/gkl840

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Williamson CT, Kubota E, Hamill JD, Klimowicz A, Ye R, Muzik H, Dean M, Tu L, Gilley D, Magliocco AM, McKay BC, Bebb DG, Lees-Miller SP (2012) Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53. EMBO Mol Med 4:515–527. doi:10.1002/emmm.201200229

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    CAS  PubMed  Google Scholar 

  113. Wurzer G, Herceg Z, Wesierska-Gadek J (2000) Increased resistance to anticancer therapy of mouse cells lacking the poly(ADP-ribose) polymerase attributable to up-regulation of the multidrug resistance gene product P-glycoprotein. Cancer Res 60:4238–4244

    CAS  PubMed  Google Scholar 

  114. Yap TA, Sandhu SK, Carden CP, de Bono JS (2011) Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61:31–49. doi:10.3322/caac.20095

    PubMed  Google Scholar 

  115. Zander SA, Kersbergen A, Van der Burg E, de Water N, Van Tellingen O, Gunnarsdottir S, Jaspers JE, Pajic M, Nygren AO, Jonkers J, Borst P, Rottenberg S (2010) Sensitivity and acquired resistance of BRCA1;p53-deficient mouse mammary tumors to the topoisomerase I inhibitor topotecan. Cancer Res 70:1700–1710

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Piet Borst, Peter Bouwman and Ewa Gogola for critical reading of the manuscript. Nora Gerhards helped with the design of Fig. 19.1. Our work on PARPi resistance is supported by grants from the Netherlands Organization for Scientific Research (NWO-VIDI-91711302 to S. Rottenberg; NWO-VICI 91814643 to J. Jonkers), and the Dutch Cancer Society (KWF projects NKI 2009-4303, NKI 2011-5197 and NKI 2011-5220), and the Swiss National Science Foundation (310030_156869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Rottenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, G., Jonkers, J., Rottenberg, S. (2015). PARP Inhibitor Resistance—What Is Beyond BRCA1 or BRCA2 Restoration?. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_19

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics