Skip to main content

Electronic Reconstruction at the Interface Between Band Insulating Oxides: The LaAlO3/SrTiO3 System

  • Chapter
Oxide Thin Films, Multilayers, and Nanocomposites

Abstract

The conducting quasi-two-dimensional electron system (q2DES) formed at the interface between LaAlO3 and SrTiO3 band insulators is confronting the condensed matter physics community with new paradigms. While the mechanism for the formation of the q2DES is debated, new conducting interfaces have been discovered paving the way to possible applications in electronics, spintronics and optoelectronics. This chapter is an overview of the research on the LAO/STO system, presenting some of the most important results obtained in the last decade to clarify the mechanism of formation of the q2DES at the oxide interfaces and its peculiar electronic properties as compared to semiconducting 2D-electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    Article  Google Scholar 

  2. E. Fradkin, S.A. Kivelson, Nat. Phys. 8, 864 (2012)

    Article  Google Scholar 

  3. J. Mannhart, D.G. Schlom, Science 327, 1607 (2010)

    Article  Google Scholar 

  4. A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Nature 419, 378 (2002)

    Article  Google Scholar 

  5. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  Google Scholar 

  6. A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004)

    Article  Google Scholar 

  7. M. Huijben, G. Koster, M.K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H.J.A. Molegraaf, J.E. Kleibeuker, S. van Aert, J.B. Goedkoop, A. Brinkman, D.H.A. Blank, M.S. Golden, G. Van Tendeloo, H. Hilgenkamp, G. Rijnders, Adv. Funct. Mater. 23, 5240 (2013)

    Article  Google Scholar 

  8. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.M. Triscone, J. Mannhart, Science 317, 1196 (2007)

    Article  Google Scholar 

  9. A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.M. Triscone, Nature 456, 624 (2008)

    Article  Google Scholar 

  10. S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart, Science 313, 1942 (2006)

    Article  Google Scholar 

  11. A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, J.M. Triscone, Phys. Rev. Lett. 104, 126803 (2010)

    Article  Google Scholar 

  12. M.A. Hein, Supercond. Sci. Technol. 10, 867 (1997)

    Article  Google Scholar 

  13. J.H. Song, T. Susaki, H.Y. Hwang, Adv. Mater. 20, 2528 (2008)

    Article  Google Scholar 

  14. M. Salluzzo, C. Aruta, I. Maggio-Aprile, Ø. Fischer, S. Bals, J. Zegenhagen, Phys. Stat. Sol. (a) 186, 339 (2001)

    Article  Google Scholar 

  15. M. Salluzzo, G. De Luca, D. Marrè, M. Putti, M. Tropeano, U. Scotti di Uccio, R. Vaglio, Phys. Rev. B 72, 134521 (2005)

    Article  Google Scholar 

  16. R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, J.M. Triscone, Phys. Rev. Lett. 106, 246403 (2011)

    Article  Google Scholar 

  17. K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593 (1979)

    Article  Google Scholar 

  18. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, Nature 430, 758 (2004)

    Article  Google Scholar 

  19. S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf, G. Lucovsky, J. Appl. Phys. 91, 4500 (2002)

    Article  Google Scholar 

  20. M. Cardona, Phys. Rev. 140, 651 (1965)

    Article  Google Scholar 

  21. A. Spinelli, M.A. Torija, C. Liu, C. Jan, C. Leighton, Phys. Rev. B 81, 155110 (2010)

    Article  Google Scholar 

  22. J. Appel, Soft-mode superconductivity in SrTiO3−x. Phys. Rev. 180, 508 (1969)

    Article  Google Scholar 

  23. X. Lin, Z. Zhu, B. Fauque, K. Behnia, Phys. Rev. X 3, 021002 (2013)

    Google Scholar 

  24. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, H. Koinuma, Science 266, 1540 (1994)

    Article  Google Scholar 

  25. G. Koster, B.L. Kropman, G.J. Rijnders, D.H. Blank, H. Rogalla, Appl. Phys. Lett. 73, 2920 (1998)

    Article  Google Scholar 

  26. A. Fragneto, G.M. De Luca, R. Di Capua, U. Scotti di Uccio, M. Salluzzo, X. Torrelles, T.-L. Lee, J. Zegenhagen, Appl. Phys. Lett. 91, 101910 (2007)

    Article  Google Scholar 

  27. T. Kubo, H. Nozoye, Surf. Sci. 542, 177 (2003)

    Article  Google Scholar 

  28. R. Eglitis, D. Vanderbilt, Phys. Rev. B 77, 195408 (2008)

    Article  Google Scholar 

  29. P.W. Tasker, J. Phys. C: Solid State Phys. 12, 4977–4984 (1979)

    Article  Google Scholar 

  30. R. Francis, S. Moss, A. Jacobson, Phys. Rev. B 64, 235425 (2001)

    Article  Google Scholar 

  31. H. Lehnert, H. Boysen, P. Dreier, Y. Yu, Z-Kristallogr. 215, 145 (2000)

    Google Scholar 

  32. G.J. Rijnders, G. Koster, D.H. Blank, H. Rogalla, Appl. Phys. Lett. 70, 1888 (1997)

    Article  Google Scholar 

  33. M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, D.H.A. Blank, Adv. Mater. 21, 1665 (2009)

    Article  Google Scholar 

  34. T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, H. Koinuma, Appl. Phys. Lett. 87, 241919 (2005)

    Article  Google Scholar 

  35. S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, R. Dittmann, Appl. Phys. Lett. 101, 131601 (2012)

    Article  Google Scholar 

  36. A. Sambri, D.V. Cristensen, F. Trier, Y.Z. Chen, S. Amoruso, N. Pryds, R. Bruzzese, X. Wang, Appl. Phys. Lett. 100, 231605 (2012)

    Article  Google Scholar 

  37. M. Salluzzo, S. Gariglio, X. Torrelles, Z. Ristic, R. Di Capua, J. Drnec, M.M. Sala, G. Ghiringhelli, R. Felici, N.B. Brookes, Adv. Mater. 25, 2333 (2013)

    Article  Google Scholar 

  38. M.P. Warusawithana, C. Richter, J.A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A.A. Pawlicki, L.F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J.N. Eckstein, D.A. Muller, C.S. Hellberg, J. Mannhart, D.G. Schlom, Nat. Commun. 4, 2351 (2013). doi:10.1038/ncomms3351

    Article  Google Scholar 

  39. G. Herranz, M. Basletic, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.M. Broto, A. Barthélémy, A. Fert, Phys. Rev. Lett. 98, 216803 (2007)

    Article  Google Scholar 

  40. C. Aruta, S. Amoruso, G. Ausanio, R. Bruzzese, E. Di Gennaro, M. Lanzano, F.M. Granozio, M. Riaz, A. Sambri, U.S. di Uccio, Appl. Phys. Lett. 101, 031602 (2012)

    Article  Google Scholar 

  41. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, Nat. Mater. 6, 493 (2007)

    Article  Google Scholar 

  42. E. Di Gennaro, U.S. di Uccio, C. Aruta, C. Cantoni, A. Gadaleta, A.R. Lupini, D. Maccariello, D. Marré, I. Pallecchi, D. Paparo, P. Perna, M. Riaz, F.M. Granozio, Adv. Opt. Mater. 1, 834 (2013)

    Article  Google Scholar 

  43. Y.Z. Chen, N. Bovet, F. Trier, D.V. Christensen, F.M. Qu, N.H. Andersen, T. Kasama, W. Zhang, R. Giraud, J. Dufouleur, T.S. Jespersen, J.R. Sun, A. Smith, J. Nygård, L. Lu, B. Büchner, B.G. Shen, S. Linderoth, N. Pryds, Nat. Commun. 4, 1371 (2013)

    Article  Google Scholar 

  44. R. Pentcheva, W. Pickett, Phys. Rev. Lett. 102, 107602 (2009)

    Article  Google Scholar 

  45. At the moment there are no indications that the (001) LaAlO3 can be at equilibrium LAO terminated. According to ref. [30] the stable termination of LaAlO3 single crystals is AlOx

    Google Scholar 

  46. A. Janotti, L. Bjaalie, L. Gordon, C.G. Van de Walle, Phys. Rev. B 86, 241108 (2012)

    Article  Google Scholar 

  47. S.A. Pauli, S.J. Leake, B. Delley, M. Björck, C.W. Schneider, C.M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, P.R. Willmott, Phys. Rev. Lett. 106, 036101 (2011)

    Article  Google Scholar 

  48. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A.D. Caviglia, A. Fête, S.J. Leake, S.A. Pauli, P.R. Willmott, M. Stengel, P. Ghosez, J.M. Triscone, Phys. Rev. Lett. 107, 056102 (2011)

    Article  Google Scholar 

  49. S.A. Chambers, M.H. Englehard, V. Shutthanandan, Z. Zhu, T.C. Droubay, T. Feng, H.D. Lee, T. Gustafsson, E. Garfunkel, A. Shah, J.M. Zuo, Q.M. Ramasse, Surf. Sci. Rep. 65, 317 (2010)

    Article  Google Scholar 

  50. M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. Pauli, C. Schneider, P. Willmott, M. Gorgoi, F. Schäfers, R. Claessen, Phys. Rev. Lett. 102, 176805 (2009)

    Article  Google Scholar 

  51. Y. Chen, N. Pryds, J.E. Kleibeuker, G. Koster, J. Sun, E. Stamate, B. Shen, G. Rijnders, S. Linderoth, Nano Lett. 11, 3774 (2011)

    Article  Google Scholar 

  52. Z.Q. Liu, C.J. Li, W.M. Lü, X.H. Huang, Z. Huang, S.W. Zeng, X.P. Qiu, L.S. Huang, A. Annadi, J.S. Chen, J.M.D. Coey, T. Venkatesan, Ariando. Phys. Rev. X 3, 021010 (2013)

    Google Scholar 

  53. N. Nakagawa, H.Y. Hwang, D.A. Muller, Nat. Mater. 5, 204 (2006)

    Article  Google Scholar 

  54. P. Willmott, S. Pauli, R. Herger, C. Schlepütz, D. Martoccia, B. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, Y. Yacoby, Phys. Rev. Lett. 99, 155502 (2007)

    Article  Google Scholar 

  55. N.C. Bristowe, P. Ghosez, P.B. Littlewood, E. Artacho, J. Phys. Condens. Matter 26, 143201 (2014)

    Article  Google Scholar 

  56. L. Yu, A. Zunger, Nature Comm. 5, 5118 (2014).

    Article  Google Scholar 

  57. G. Berner, M. Sing, H. Fujiwara, A. Yasui, Y. Saitoh, A. Yamasaki, Y. Nishitani, A. Sekiyama, N. Pavlenko, T. Kopp, Phys. Rev. Lett. 110, 247601 (2013)

    Article  Google Scholar 

  58. C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy, Nat. Mater. 7, 298 (2008)

    Article  Google Scholar 

  59. F. De Groot, J. Electron Spectros. Relat. Phenom. 67, 529 (1994)

    Article  Google Scholar 

  60. M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi, C. Piamonteze, G.M. De Luca, M. Minola, D. Marrè, A. Gadaleta, H. Brune, F. Nolting, N.B. Brookes, G. Ghiringhelli, Phys. Rev. Lett. 111, 087204 (2013)

    Article  Google Scholar 

  61. M. Salluzzo, J. Cezar, N. Brookes, V. Bisogni, G. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, G. Ghiringhelli, Phys. Rev. Lett. 102, 166804 (2009)

    Article  Google Scholar 

  62. In the ionic formal configuration, oxygen is in the O2− valence state, with fully occupancy of the 2p orbitals (2p6). One may wonder why 1s-2p process is allowed in the solid. The reason is that in a solid oxygen and neighbour cations are always characterized by some degree of covalence bonding (the bonding is not purely ionic), and as consequence some of the 2p electrons are not exactly localized in the 2p states, but shared among the other cations and in particular with Ti-3d states. This is one of the reasons why the assignment of a formal static valence to an ion in a solid is in-general quite arbitrary, and may generate confusion. In particular, Ti3+ and Ti4+ valence states are probably close to the effective valence only in the limiting cases of SrTiO3 (Ti4+ 3d0) and LaTiO3 (Ti3+ 3d1). Still, a more appropriate definition of the charge of an atom in ionic crystal is necessary

    Google Scholar 

  63. Z. Ristic, R. Di Capua, G.M. De Luca, F. Chiarella, G. Ghiringhelli, J.C. Cezar, N.B. Brookes, C. Richter, J. Mannhart, M. Salluzzo, Europhys. Lett. 93, 17004 (2011)

    Article  Google Scholar 

  64. C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P.R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Phys. Rev. B 89, 121412 (2014)

    Article  Google Scholar 

  65. A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Nature 469, 189 (2010)

    Article  Google Scholar 

  66. R. Pentcheva, W. Pickett, Phys. Rev. B 74, 035112 (2006)

    Article  Google Scholar 

  67. P. Delugas, A. Filippetti, V. Fiorentini, D.I. Bilc, D. Fontaine, P. Ghosez, Phys. Rev. Lett. 106, 166807 (2011)

    Article  Google Scholar 

  68. M. Breitschaft, V. Tinkl, N. Pavlenko, S. Paetel, C. Richter, J.R. Kirtley, Y.C. Liao, G. Hammerl, V. Eyert, T. Kopp, J. Mannhart, Phys. Rev. B 81, 153414 (2010)

    Article  Google Scholar 

  69. C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L.F. Kourkoutis, D.A. Muller, J.R. Kirtley, C.W. Schneider, J. Mannhart, Nature 502, 528 (2013)

    Article  Google Scholar 

  70. Z. Ristic, R. Di Capua, F. Chiarella, G.M. De Luca, I. Maggio-Aprile, M. Radović, M. Salluzzo, Phys. Rev. B 86, 045127 (2012)

    Article  Google Scholar 

  71. Y. Ishida, R. Eguchi, M. Matsunami, K. Horiba, M. Taguchi, A. Chainani, Y. Senba, H. Ohashi, H. Ohta, S. Shin, Phys. Rev. Lett. 100, 056401 (2008)

    Article  Google Scholar 

  72. Ariando, X. Wang, G. Baskaran, Z.Q. Liu, J. Huijben, J.B. Yi, A. Annadi, A.R. Barman, A. Rusydi, S. Dhar, Y.P. Feng, J. Ding, H. Hilgenkamp, T. Venkatesan, Nat. Commun. 2, 188 (2011)

    Article  Google Scholar 

  73. L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Nat. Phys. 7, 762 (2011)

    Article  Google Scholar 

  74. J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, K.A. Moler, Nat. Phys. 7, 767 (2011)

    Article  Google Scholar 

  75. M.R. Fitzsimmons, N.W. Hengartner, S. Singh, M. Zhernenkov, F.Y. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H.J.A. Molegraaf, J. de la Venta, I.K. Schuller, Phys. Rev. Lett. 107, 217201 (2011)

    Article  Google Scholar 

  76. Z. Salman, O. Ofer, M. Radović, H. Hao, M. Ben Shalom, K.H. Chow, Y. Dagan, M.D. Hossain, C.D.P. Levy, W.A. MacFarlane, G.M. Morris, L. Patthey, M.R. Pearson, H. Saadaoui, T. Schmitt, D. Wang, R.F. Kiefl, Phys. Rev. Lett. 109, 257207 (2012)

    Article  Google Scholar 

  77. P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Science 300, 1130 (2003)

    Article  Google Scholar 

  78. J.S. Lee, Y.W. Xie, H.K. Sato, C. Bell, Y. Hikita, H.Y. Hwang, C.C. Kao, Nat. Mater. 12, 703 (2013)

    Article  Google Scholar 

  79. E. Stavitski, F.M.F. de Groot, Micron 41, 687 (2010)

    Article  Google Scholar 

  80. S. Banerjee, O. Erten, M. Randeria, Nat. Phys. 9, 626 (2013)

    Article  Google Scholar 

  81. A. Savoia, D. Paparo, P. Perna, Z. Ristic, M. Salluzzo, F. Miletto Granozio, U. Scotti di Uccio, C. Richter, S. Thiel, J. Mannhart, L. Marrucci, Phys. Rev. B 80, 075110 (2009)

    Article  Google Scholar 

  82. A.F. Santander-Syro, C. Bareille, F. Fortuna, O. Copie, M. Gabay, F. Bertran, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, N. Reyren, M. Bibes, A. Barthélémy, P. Lecoeur, J. Guevara, M.J. Rozenberg, Phys. Rev. B 86, 121107 (2012)

    Article  Google Scholar 

  83. D. Stornaiuolo et al., Appl. Phys. Lett. 101, 222601 (2012)

    Article  Google Scholar 

  84. R. Jany et al., Adv. Mater. Interfaces 1, 1300031 (2013)

    Google Scholar 

  85. G.M. De Luca, R. Di Capua, E. Di Gennaro, F.M. Granozio, D. Stornaiuolo, M. Salluzzo, A. Gadaleta, I. Pallecchi, D. Marrè, C. Piamonteze, M. Radović, Z. Ristic, S. Rusponi, Phys. Rev. B 89, 224413 (2014)

    Article  Google Scholar 

  86. S. Das, A. Rastogi, L. Wu, J.-C. Zheng, Z. Hossain, Y. Zhu, R.C. Budhani, Phys. Rev. B 90, 081107 (2014)

    Article  Google Scholar 

  87. A. Annadi, Q. Zhang, X.R. Wang, N. Tuzla, K. Gopinadhan, W.M.L. Uuml, A.R. Barman, Z.Q. Liu, A. Srivastava, S. Saha, Y.L. Zhao, S.W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan, Ariando. Nat. Commun. 4, 1838 (2013)

    Article  Google Scholar 

  88. G. Herranz, F. Sánchez, N. Dix, M. Scigaj, J. Fontcuberta, Scientific Reports 2, 758 (2012)

    Google Scholar 

  89. D. Doennig, W.E. Pickett, R. Pentcheva, Phys. Rev. Lett. 111, 126804 (2013)

    Article  Google Scholar 

  90. D. Stornaiuolo, et al. Phys. Rev. B 90, 235426 (2014)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to G. Ghiringhelli, F. Miletto Granozio, N. B. Brookes, J-M. Triscone, J. Mannhart, S. Gariglio, C. Piamonteze, X. Torrelles, S. Rusponi, D. Marrè and R. Felici for the fruitful discussion and continuous collaboration on the subject. We also acknowledge E. di Gennaro, A. Brinkman, M.P. Warusawithana and M. Sing for granting permission about reproduction of some figures and for exchange of ideas. This research was funded by the European Union FP7 Program MPNS COST Action MP1308-TO-BE and from the Italian MIUR FIRB project Grant no. RBAP115AYN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Salluzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salluzzo, M. (2015). Electronic Reconstruction at the Interface Between Band Insulating Oxides: The LaAlO3/SrTiO3 System. In: Mele, P., Endo, T., Arisawa, S., Li, C., Tsuchiya, T. (eds) Oxide Thin Films, Multilayers, and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-14478-8_10

Download citation

Publish with us

Policies and ethics