Skip to main content

Local and Global Webs

  • Chapter
  • First Online:
An Invitation to Web Geometry

Part of the book series: IMPA Monographs ((IMPA,volume 2))

  • 940 Accesses

Abstract

In its classical form, web geometry studies local configurations of finitely many smooth foliations in general position. In Sect. 1.1 the basic definitions of our subject are laid down and the algebraic webs are introduced. These are among the most important examples of the whole theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In other terms, the four base points of the pencils \(\mathcal{L}_{1},\ldots,\mathcal{L}_{4}\) are in ‘general position’ in \(\mathbb{P}^{2}\).

  2. 2.

    Here, and throughout, i v denotes the interior product.

  3. 3.

    The convention adopted in this text is that over a point p the fiber π −1(p) is the space of one-dimensional subspaces of \(T_{p}^{{\ast}}(\mathbb{C}^{n}, 0)\). Beware that some authors consider π −1(p) as the space of one-dimensional quotients of \(T_{p}^{{\ast}}(\mathbb{C}^{n}, 0)\).

  4. 4.

    In case of confusion, notice that the coordinate functions on a vector space E can be chosen to be elements of E , that is, linear forms on E.

  5. 5.

    As usual the fundamental group acts on the right and thus \(\rho _{\mathcal{W}}\) is not a homomorphism but instead an anti-homomorphism, that is one has \(\rho _{\mathcal{W}}(\gamma _{1} \cdot \gamma _{2}) =\rho _{\mathcal{W}}(\gamma _{2}) \cdot \rho _{\mathcal{W}}(\gamma _{1})\) for arbitrary \(\gamma _{1},\gamma _{2} \in \pi _{1}(U,x_{0})\).

  6. 6.

    When X is a singular variety, a web on X is a web on its smooth locus which extends to a global web on any of its desingularizations.

  7. 7.

    Recall that a linear system is the projectivization \(\vert V \vert = \mathbb{P}(V )\) of a finite dimensional vector subspace \(V \subset H^{0}(S,\mathcal{L})\), where \(\mathcal{L}\) is a line-bundle on S. When S is a germ of surface, any line-bundle on it is trivial hence a linear system is nothing else than the projectivization of a finite dimensional vector space of germs of functions.

  8. 8.

    An ordinary tacnode is a singularity of curve with exactly two branches, both of them smooth, having an ordinary tangency. Here tacnode refer to a curve cut out by a power series of the form

    $$\displaystyle{\ell(x,y)^{2} +\ell (x,y)P_{ 2}(x,y) + h.o.t.}$$

    where is a linear form and P 2 is a homogeneous form of degree 2.

  9. 9.

    This surface is a Del Pezzo surface of degree 5.

Bibliography

  1. Akivis, A., Shelekhov, A.: Geometry and algebra of multidimensional three-webs. In: Mathematics and Its Applications, vol. 82. Kluwer, Dordrecht (1992)

    Google Scholar 

  2. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)

    Google Scholar 

  3. Arnol’d, V.I.: Geometrical methods in the theory of ordinary differential equations. In: Grundlehren der Mathematischen Wissenschaften, vol. 250. Springer, New York (1988)

    Google Scholar 

  4. Cavalier, V., Lehmann, D.: Global stucture of webs in codimension one. Preprint arXiv:0803.2434v1 (2008)

    Google Scholar 

  5. Chern, S.-S., Griffiths, P.A.: Abel’s theorem and webs. Jahresberichte der Deutsch. Math.-Ver. 80, 13–110 (1978). http://eudml.org/doc/146681

  6. Dalbec, J.: Multisymmetric functions. Beiträge Algebra Geom. 40, 27–51 (1999). http://www.emis.de/journals/BAG/vol.40/no.1/3.html

  7. De Medeiros, A.: Singular foliations and differential p-forms. Ann. Fac. Sci. Toulouse Math. 9, 451–466 (2000). http://eudml.org/doc/73521

  8. Eisenbud, D., Green, M., Harris, J.: Cayley-Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295–324 (1996). Doi:10.1090/S0273-0979-96-00666-0

    Article  MATH  MathSciNet  Google Scholar 

  9. Fubini, G., \(\check{\mathrm{C}}\) ech, E.: Introduction à la Géométrie Projective Différentielle des Surfaces. Gauthier-Villars, Paris (1931).

    Google Scholar 

  10. Fuchs, D., Tabachnikov, S.: Mathematical Omnibus. Thirty Lectures on Classic Mathematics. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  11. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994)

    Google Scholar 

  12. Ghys, E.: Osculating curves. Slides of a talk (2007). http://www.umpa.ens-lyon.fr/~ghys/Publis.html

  13. Goldberg, V.V.: Theory of multicodimensional (n + 1)-webs. Mathematics and Its Applications, vol. 44. Kluwer, Dordrecht (1988)

    Google Scholar 

  14. Griffiths, P.A., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  15. Grifone, J., Salem, E. (eds.): Web Theory and Related Topics. World scientific, Singapore (2001)

    MATH  Google Scholar 

  16. Lane, E.: A Treatise On Projective Differential Geometry. University of Chicago Press, Chicago (1942)

    Google Scholar 

  17. Nakai, I.: Web geometry and the equivalence problem of the first order partial differential equations. In: Grifone, J., Salem E. (eds.) Web Theory And Related Topics, pp. 150–204. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  18. Nickalls, R., Dye, R.: The geometry of the discriminant of a polynomial. Math. Gaz. 80, 279–285 (1996). Doi:10.1.1.190.9465

    Google Scholar 

  19. Pirola, G.P., Schlesinger, E.: Monodromy of projective curves. J. Algebraic Geom. 14, 623–642 (2005). Doi:10.1090/S1056-3911-05-00408-X

    Article  MATH  MathSciNet  Google Scholar 

  20. Robert, G.: Poincaré maps and Bol’s Theorem. Available electronically at http://kyokan.ms.u-tokyo.ac.jp/~topology/GHC/data/Robert.pdf (2005).

  21. Segre, C.: Le linee principali di una superficie di S5 e una proprietà caratteristica della superficie di Veronese. Atti R. Acc. Lincei XXX, 200–203/227–231 (1921)

    Google Scholar 

  22. Tabachnikov, S., Timorin, V.: Variations on the Tait-Kneser theorem. Preprint arXiv:math/0602317 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, J.V., Pirio, L. (2015). Local and Global Webs. In: An Invitation to Web Geometry. IMPA Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14562-4_1

Download citation

Publish with us

Policies and ethics