Skip to main content

Detachment of Bacteria

  • Chapter
  • First Online:
Biofilm and Materials Science
  • 1740 Accesses

Abstract

The rheological properties of biofilms have a great impact on major processes such as transport of nutrients, light, biocides, water, biochemicals and cells. The knowledge of the mechanical properties of biofilms is essential in quantifying the overall process of biofilm development and bacterial survival (and proliferation)—one of the key processes in a biofilm lifecycle is detachment. It is therefore crucial to be able to predict the biofilm detachment and break up in response to internal and external forces that drive the biofilm cycle. This chapter aims to highlight some of the important processes in the biofilm detachment cycle. It will also draw on some new and old concepts on this age old battle of biofilm survival and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brackman G, et al (2009) Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res Microbiol 160(2):144–151

    Article  Google Scholar 

  2. Kissel JC, McCarty PL, Street RL (1984) Numerical simulation of mixed-culture biofilm. J Environ Eng 110(2):393–411

    Article  Google Scholar 

  3. Chapman J, Regan F (2012) Nanofunctionalized superhydrophobic antifouling coatings for environmental sensor applications advancing deployment with answers from nature. Adv Eng Mater 14(4):B175–184

    Article  Google Scholar 

  4. Chapman J, Weir E, Regan F (2010) Period four metal nanoparticles on the inhibition of biofouling. Coll Surf B Biointerfaces 78(2):208–216

    Article  Google Scholar 

  5. Gangadoo S, Taylor-Robinson A, Chapman J (2014) Nanoparticle and biomaterial characterisation techniques. Mater Technol: Adv Biomater 30(B1):B44–B56

    Google Scholar 

  6. Costerton JW, Lappin-Scott HM (1995) Introduction to microbial biofilms. In: Lappin-Scott HM, Costerton JW (ed) Microbial biofilms,, 1st ed. Cambridge University Press, New York, pp 1–11

    Google Scholar 

  7. Gangadoo S, Chapman J (2014) Emerging biomaterials and strategies for medical applications: a review. Mater Technol: Adv Biomater 30(B1 2015):B3–B7

    Google Scholar 

  8. Rice S, et al (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187(10):3477–3485

    Article  Google Scholar 

  9. Picioreanu C., van Loosdrecht MC, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72(2):205–218

    Article  Google Scholar 

  10. Peyton BM, Characklis W (1993) A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41(7):728–735

    Article  Google Scholar 

  11. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  Google Scholar 

  12. Boyd A, Chakrabarty AĂ¡ (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appli Environ Microbiol 60(7):2355–2359

    Google Scholar 

  13. Stoodley P, et al (2002) Biofilms as complex differentiated communities. Annl Rev Microbiol 56(1):187–209

    Article  Google Scholar 

  14. Chapman J, et al (2014) Bioinspired synthetic macroalgae: examples from nature for antifouling applications. International Biodeterioration Biodegrad 86:6–13

    Article  Google Scholar 

  15. Chapman J, et al (2010) Phthalate doped PVC membranes for the inhibition of fouling. J Membr Sci 365(1):180–187

    Article  Google Scholar 

  16. Chapman J, et al (2013) Antifouling performances of macro-to micro-to nano-copper materials for the inhibition of biofouling in its early stages. J Mater Chem B 1(45):6194–6200

    Article  Google Scholar 

  17. Ohashi A, et al (1999) A novel method for evaluation of biofilm tensile strength resisting erosion. Water Sci Technol 39(7):261–268

    Article  Google Scholar 

  18. Battin T, Sengschmitt D (1999) Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microbial Ecol 37(3):185–196.

    Article  Google Scholar 

  19. Laspidou C, et al (2014) Material modeling of biofilm mechanical properties. Math Biosci 251:11–15

    Article  Google Scholar 

  20. Characklis W (1981) Bioengineering report: fouling biofilm development: a process analysis. Biotechnol Bioeng 23(9):1923–1960

    Article  Google Scholar 

  21. Wäsche, S., H. Horn, D.C. Hempel (2002) Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res 36(19):4775–4784

    Article  Google Scholar 

  22. Casey E, Glennon B, Hamer G (2000) Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance. Biotechnol Bioeng 67(4):476–486

    Article  Google Scholar 

  23. Walker J, Marsh P (2007) Microbial biofilm formation in DUWS and their control using disinfectants. J Dent 35(9):721–730

    Article  Google Scholar 

  24. Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2(4):345

    Article  Google Scholar 

  25. Chen X, et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415(6871):545–549

    Article  Google Scholar 

  26. Deng Y, et al (2010) Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111(1):160–173

    Article  Google Scholar 

  27. Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5(6):e1000483

    Article  Google Scholar 

  28. Dow JM, et al (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100(19):10995–11000

    Article  Google Scholar 

  29. Lee KJ, et al (2013) Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum—sensing in Vibrio vulnificus. Mol Microbiol 90(4):841–857

    Article  Google Scholar 

  30. Periasamy S, et al (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109(4):1281–1286

    Article  Google Scholar 

  31. Orgaz B, et al (2006) Bacterial biofilm removal using fungal enzymes. Enzyme Microb Technol 40(1):51–56

    Article  Google Scholar 

  32. Costerton JW, et al (1987) Bacterial biofilms in nature and disease. Annl Rev Microbiol 41(1):435–464

    Article  Google Scholar 

  33. Morgenroth E, Wilderer PA (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34(2):417–426

    Google Scholar 

  34. Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41(1):111–117

    Article  Google Scholar 

  35. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chapman, J. (2015). Detachment of Bacteria. In: Kanematsu, H., Barry, D. (eds) Biofilm and Materials Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14565-5_6

Download citation

Publish with us

Policies and ethics